Soar-EpMem Tutorial

Soar Workshop 31 – Nate Derbinsky

While waiting...

- 1. Make sure you have internet access
- 2. Download Soar 9.3.1

soar.googlecode.com

3. Download Graphviz

www.graphviz.org

4. Download tutorial support files

www.eecs.umich.edu/~nlderbin/workshop31

Agenda

- Big picture
- Basic usage
- Demo task
- Additional resources

Soar 9

Episodic Memory: Big Picture

Episodic memory is a weak learning mechanism

- Automatically captures, stores, and temporally indexes agent state
- Supports content-addressable agent interface to autobiographical prior experience

Basic Usage

- Working memory structure
- Episodic memory representation
- Controlling episodic memory
- Storing knowledge
- Retrieving knowledge

Working Memory Structure

Soar creates an epmem structure on each state

- Soar Java Debugger
 - step 5
 - print --exact (* ^epmem *)
 - print s2

Each epmem structure has specialized substructure

- command: agent-initiated actions
- result: architectural feedback
- present-id: current episode number (more later)

Episodic Memory Representation

Similar to working memory: symbolic triples

- Attributes cannot be identifiers (currently)
- Structures within an episode are connected; separate episodes are disconnected

```
(<id0> ^epmem <id3>
                                                                 ID_0
         ^io <id1>
                                                                    reward-link
                                                                          superstate
                                                            smem /epmem
         ^reward-link <id4>
         ^smem <id2>
                                                               ID 3
                                                                    ID_4
         ^superstate nil
                                          output-link input-link
                                                       result command
                                                                result
                                                                   command
                                                                         present-id
         ^type state)
(<id1> ^input-link <id6>
                                       ID 5
                                             ID_6
                                                   ID_7
                                                        ID_8
                                                              ID_9
                                                                    ID_10
         ^output-link <id5>)
(<id2> ^command <id8> ^result <id7>)
(<id3> ^command <id10> ^present-id 1
         ^result <id9>)
```

Controlling Episodic Memory

Get/Set a parameter:

```
- epmem [-g|--get] <name>
```

- epmem [-s | --set] <name> <value>

EpMem is disabled by default. Try enabling it...

- 1. epmem
- 2. epmem --set learning on
- 3. epmem

Storing Knowledge

- Automatic storage requires EpMem to be enabled (see slide 12)
- Storage captures the top state of working memory
- Events trigger storage of new episodes
 - epmem --set trigger << dc output >>
 - dc: decision cycle
 - output: new identifier on output-link (default)
- Storage takes place at the end of a phase
 - epmem --set phase << output selection >>
 - output is default
 - selection may be useful for in-the-head agents

Automatic Storage: Example (1)

- Soar Java Debugger
 - 1. epmem --set trigger dc
 - 2. epmem --set learning on
 - 3. watch --epmem
 - 4. run 5 -p
 - 5. epmem --print 1
 - 6. ctf ep.gv epmem --viz 1
 - 7. print el
 - 8. epmem --stats

Automatic Storage: Example (1) Debrief

- What wasn't captured?
- Attributes can be excluded from encoding (and subsequent recursion)
 - epmem --set exclusions <label>
 - If <label> already excluded, now included
- Try previous example, add:
 - epmem --set exclusions epmem
 - -epmem --set exclusions smem

Automatic Storage: Example (2)

- Eaters
 - 1. New agent (advanced-move.soar)
 - Spawn Debugger
 - 2. epmem --set learning on
 - 3. epmem --stats

Retrieving Knowledge

Cue-Based

Find the episode that best matches a cue and add it to working memory

Temporal Progression

Replace the currently retrieved episode with the next/previously encoded episode

Non-Cue-Based (not covered)

Add an episode to working memory from episode #

Common Constraints:

- Requires that EpMem is enabled (slide 12)
- Only one per state per decision
- Processed during phase (slide 13)
- Only re-processed if WM changes to commands
- Meta-data (status, etc) automatically cleaned by the architecture

Cue-Based Retrieval: Syntax

- The neg-query is optional
- Cues must be <u>acyclic</u>
- The <q> and <nq> identifiers form the roots of episode sub-graph cues
 - query represents desired structures
 - neg-query represents undesired structures

Cue-Based Retrieval: Cue Semantics

Values of cue WMEs are interpreted by type

- Constant: exact match
- Long-Term ID: exact match, stop
- Short-Term ID: Wildcard (but must be identifier)

Cue-Based Retrieval: Episode Scoring

- Leaf WME, either...
 - Cue WME whose value is a constant OR
 - Cue WME whose value is an identifier and that identifier has no augmentations
- A leaf wme is *satisfied* (w.r.t. an episode) if...
 - The episode contains that WME AND
 - The episode contains a path from root to that WME
- Episode scoring
 - (balance)(cardinality) + (1-balance)(activation)
 - balance: parameter=[0,1], default=1
 - cardinality: # satisfied leaf WMEs
 - activation: Σ satisfied leaf WME activation (see Manual)
 - cardinality/activation negated for neg-query

Cue-Based Retrieval: Cue Matching

Graph matching

epmem --set graph-match << on off >>
 on by default

Candidate episode

Defined as satisfying at least one leaf WME

Cue matching will return the most recent graphmatched episode, or the most recent non-graphmatched candidate episode with the maximal episode score

Cue-Based Retrieval: Result

Augmentation	Meaning
^retrieved <retrieval-root></retrieval-root>	Root of the retrieved memory
^<< success failure >> <query> <neg-query></neg-query></query>	Query status
^match-score #	Float, episode score (slide 19)
^cue-size #	Integer, number of leaf WMEs
^normalized-match-score #	match-score/cue-size
^match-cardinality #	Integer, number of satisfied leaf WMEs (query - neg-query)
^memory-id #	Integer, episode # retrieved
^present-id #	Integer, current episode #
^graph-match << 0 1 >>	Integer, 1 if graph match succeeded
^mapping <mapping-root></mapping-root>	A mapping from the cue to episode

Cue-Based Retrieval: Example (1)

query-1.soar (find superstate nil)

- Soar Java Debugger
 - 1. epmem --set trigger dc
 - 2. epmem --set learning on
 - 3. watch --epmem
 - 4. sp {query1

```
-->
  (<cmd> ^query.superstate nil)}
```

- 5. run 5 -p
- 6. print -d 10 e1

Cue-Based Retrieval: Example (1)

Result

Pop Quiz: how did I make this?

Cue-Based Retrieval: Example (1)

Trace

```
CONSIDERING EPISODE (time, cardinality, score): (1, 1, 1.000000)

NEW KING (perfect, graph-match): (true, true)
```

Cue-Based Retrieval: Example (2)

query-2.soar (find when max is defined and first is true)

- Soar Java Debugger
 - 1. source query-2.soar
 - 2. run

```
CONSIDERING EPISODE (time, cardinality, score): (11, 1, 1.000000)

NEW KING (perfect, graph-match): (false, false)

CONSIDERING EPISODE (time, cardinality, score): (1, 2, 2.000000)

NEW KING (perfect, graph-match): (true, true)
```

Cue-Based Retrieval: Example (2b)

query-2b.soar (longer version of 2)

- Soar Java Debugger
 - 1. source query-2b.soar
 - 2. run
 - 3. epmem --stats
 - 4. epmem --timers

```
CONSIDERING EPISODE (time, cardinality, score): (10001, 1, 1.000000)

NEW KING (perfect, graph-match): (false, false)

CONSIDERING EPISODE (time, cardinality, score): (1, 2, 2.000000)

NEW KING (perfect, graph-match): (true, true)
```

Cue-Based Retrieval: Example (2b)

```
Time: 10002
SQLite Version: 3.6.12
Memory Usage: 2957920
Memory Highwater: 2988656
Queries: 1
Nexts: 0
Prevs: 0
Last Retrieval WMEs: 14
Last Query Positive: 2
Last Query Negative: 0
Last Query Retrieved: 1
Last Query Cardinality: 2
Last Query Literals: 2
```

Cue-Based Retrieval: Example (2b)

Timers

```
total: 0.147855
epmem api: 1.9e-05
epmem hash: 0.010883
epmem init: 0.000355
epmem ncb retrieval: 2.6e-05
epmem next: 0
epmem_prev: 0
epmem query: 4.2e-05
epmem storage: 0.134101
epmem trigger: 6e-06
epmem_wm_phase: 1e-06
ncb edge: 5e-06
ncb_edge_rit: 2e-06
ncb node: 5e-06
ncb node rit: 0
query_dnf: 3.6e-05
query graph match: 0
query_neg_end_ep: 0
query neg end now: 0
query_neg_end_point: 0
query neg start ep: 0
query_neg_start_now: 0
query neg start point: 0
query_pos_end_ep: 0
query pos end now: 0
query_pos_end_point: 0
query pos start ep: 0
query_pos_start_now: 0
query pos start point: 0
```

Cue-Based Retrieval: Example (3)

query-3.soar (find a number that is even and odd)

- Soar Java Debugger
 - source query-3.soar
 - run
 - epmem --stats
 - epmem --timers

```
CONSIDERING EPISODE (time, cardinality, score): (11, 1, 1.000000)

NEW KING (perfect, graph-match): (false, false)

CONSIDERING EPISODE (time, cardinality, score): (9, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (8, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (7, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (6, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (5, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (4, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (3, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (2, 1, 1.000000)

CONSIDERING EPISODE (time, cardinality, score): (1, 1, 1.000000)
```

Cue-Based Retrieval

Optional Modifiers

```
(<cmd> ^before time-id)
(<cmd> ^after time-id)
(<cmd> ^prohibit time-id1 time-id2 ...)
```

Task. Modify query-3. soar to find an episode with an even count, before episode 10, that is not a power of 2.

- Using a neg-query (query-3b.soar)
- 2. Using modifiers (query-3c.soar)

Cue-Based Retrieval

Debrief: neg-query vs. modifiers

neg-query

```
CONSIDERING EPISODE (time, cardinality, score): (11, 0, 0.000000)

NEW KING (perfect, graph-match): (false, false)

CONSIDERING EPISODE (time, cardinality, score): (8, 0, 0.000000)

CONSIDERING EPISODE (time, cardinality, score): (6, 1, 1.000000)

NEW KING (perfect, graph-match): (true, true)
```

modifiers

```
CONSIDERING EPISODE (time, cardinality, score): (6, 1, 1.000000)

NEW KING (perfect, graph-match): (true, true)
```

Cue-Based Retrieval: Example (4) friends.soar

- Soar Java Debugger
 - source friends.soar
 - run

```
CONSIDERING EPISODE (time, cardinality, score): (4, 1, 1.000000)

NEW KING (perfect, graph-match): (true, false)

CONSIDERING EPISODE (time, cardinality, score): (3, 1, 1.000000)

NEW KING (perfect, graph-match): (true, true)
```

Cue-Based Retrieval: Example (4)

Temporal Progression

```
(<cmd> ^next <new-id>)
(<cmd> ^previous <new-id>)
```

Retrieves the next/previous episode, temporally, with respect to the last that was retrieved

Task. Modify query-3c.soar (slide 31) to find the episode *after* (query-3c-after.soar).

Demo: Virtual Sensing Task

demo.soar

Produce a random number in WM
 EpMem automatically records this episode (demo-start.soar)

Remove the number from WM Write to the trace (for later verification)

3. Query episodic memory
When did I last see a random number?

4. Reason about the retrieved episode Extract and print the number

Additional Resources

- Documentation
- Demo agents
- Readings

Documentation

Manual

share/soar/Documentation

Additional Topics

- Absolute non-cue-based retrievals
- Disk-based databases
- Performance
- Usage: commands, parameters, statistics, etc.

• • •

Demo Agents

share/soar/Demos

- kb
 - Demonstrates and unit tests the EpMem API
- count-epmem
 - Counting agent: stores then retrieves
 - Used for performance evaluation

Select Readings

code.google.com/p/soar/wiki/Publications

2004

 A Cognitive Model of Episodic Memory Integrated with a General Cognitive Architecture Andrew M. Nuxoll, John E. Laird (ICCM)

2007

- Extending Cognitive Architecture with Episodic Memory Andrew M. Nuxoll, John E. Laird (AAAI)
- Enhancing Intelligent Agents with Episodic Memory Andrew M. Nuxoll (Dissertation)

2009

- Efficiently Implementing Episodic Memory Nate Derbinsky, John E. Laird (ICCBR)
- A Year of Episodic Memory
 John E. Laird, Nate Derbinsky (IJCAI Workshop)
- Learning to Use Episodic Memory
 Nicholas A. Gorski, John E. Laird (ICCM)

2010

- Extending Soar with Dissociated Symbolic Memories
 Nate Derbinsky, John E. Laird (AISB)
- Instance-Based Online Learning of Deterministic Relational Action Models Joseph Xu, John E. Laird (AAAI)