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Problem Domain Definitions Methodology: Combining Reinforcement Learning in Soar

(Soar-RL) with Lexical Link Analysis (LLA)

Common Tactical Air Picture (CTAP) Process

« Collects and analyzes data from a vast network of sensors and platforms Soar: Open source cognitive architecture, developed by University of Michigan, integrates

. . reinforcement learning to modify action-selection knowledge represented as rules.
to m?:lke be.tter FleCISlonS for defen51V§ pul’pOSGS. Lexical Link Analysis: Text/data mining method to discover 1nitial correlations and rules
* Provides situational awareness to decision-makers. P ——
Soar-RL Rule Example
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Combat Identification (CID)

* Locates and 1dentifies critical airborne objects as friendly, hostile or
neutral with high precision.
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" Rules’ preferences need to be trained and updated

— Learn from the historical data with ground truth

2. Can Soar-RL be used }
to automate updating
and learning true POH?

Combat System .
Radar SPY-1
asasrtem Coordinator (CS) Flgure 2.
yst T e [ Learn from the feedback of a human operator
c°°(?s:2;"t°r Tactical Action Officer(TAO) Officer (CSO) As shown in Equation (I).Soar-RL is implemented in a typical RL implementation involving a
1 | _  Learn from the cross-validation of big data recursiye form.ula that 1s widely accepted in the. RL resegrch and literat‘ure. Since we only cpnsider an
Missile Systems ASWC (Air Anti-aircraft Warfare on-policy setting or SARSA, Q(s¢+1.a) = 0 in Equation (1). Therefore, Q(s¢+1, ar+1) is updated
Supervisor (MSS) Coordinator: optional) _  Learn from the delayed ground truth after actions continuously for each time point and immediate reward 7.
Unclassified . taken
Figure 1
* Q(St—}-l'at—{—l) = Q(St-at) — Q‘[l' — Y l;leali( Q(St+1.a) — Q(St-(lt)] (1)
(https://soar.eecs.umich.edu/downloads/Documentation/SoarManual.pdf: Page 135)
. Data from Naval Simulation System Soar-RL/LLA Learning Results Compared with Other Methods
' Table 1: Classification Errors Comparison
_ B J48 LR NB Soar-RL 1 | Soar-RL 2
R i St Convergence of Error Rate T Zero InitialPref. 2703, £ps =0.05 Train eed=100 | 0.26% | 0.93% | 1.19% 2.8% 1.9%
ot e o, b a v L Test ceei1) | 0.24% | 0.75% | 0.92% | 14% 0.6%
e Lo = e 0. = Zero Initiol Pret. 5=0.3, Eps =0 Test Geed=1256) | 1.24% | 1.02% | 1.17% 1.9% 1.8%
« Responsive Tactics and Forces Re-Direction « Interaction Effects at the Unit And Individual
e nmga Mok loe / >oar Agent Test eed=2357) | 0.63% | 1.32% | 1.56% | 2.2% 2%
" U"'M"mi""” e Ze10 Initial Pref. 2=0.05, Eps = 0
Monte Carlo y Figure 4 shows.cl.a.smﬁcatlon error rates for two Soar-
- '35%:}:15@”‘ - Ulati ¢ 3 ——UamidalPrer. 2-03.65:005 R, settings (1. initial preferences are computed from
amatn Gt [t e et simuiations o £ LLA; 2. initial preferences are zeros) decrease with
and Platform 4 > we LLA Initial Pref. 2= 0.05, Eps=0.05 . . .
— Naval platforms . ' more iterations when varying the parameters of Soar-
Results: Force-on-Force Measures of Effectiveness (MOEs . . . . .
Systems Level Measures of Performance (PSIOPs)) a n d m | SS | O n S LLA Initial Pref. a=0.05, Eps = 0 RL (leamlng-rate alpha and CpSllOH).
Figure 3. Tuble 1 lassificati R S
* Monte Carlo simulation of Naval platforms in a tactical scenario | \ REIi ett.comp e,ltrﬁ > cfa551 zﬁatlon cror rztis toli IWO >0dl-
where the BLUE TAO tries to predict the probability of hostility of v t;e dlngs vgl 3 oW o ter SUP® mJS:S la “ t.earmng
an airborne object based kinematic features such as altitude, speed, °~ \ ‘ "V - — methods Su‘i Ras 631;1]0? reBes (Le.NB ),f Oglsﬂllc o
heading, and the changes in each feature ,_/‘AA \ WA o i;gi{essmn( ), and Naive Bayes (NB) from the too
. . . v - 4 AL —— .
* Each scenario generated according to a different random seed - VN V- S — -— ~ e
number specified in NSS. Four random seeds (10,11, 1256,23576).
Each different random seed generates a slightly different set of Fi 4 e
track data. 1gure 4.
* Total 2690 tracks and 449 (16.7%) tracks are hostile.
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Continual and Real-time Learning Requirement: An ML/AI Conclusions

assistant in a tactical environment needs to be trained initially

and then continues to learn and adapt to human operators’
feedback or new data. * The Soar-RL/LLA methodology ensures the following aspects
a5 of continual learning requirements for potential further and

future studies:

* Soar-RL/LLA 1s a continual learning method for CID.
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35 — Resistance to catastrophic forgetting — new learning of
Soar-RL does not destroy performance on previously seen
data;
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— Bounded system size — the Soar-RL model’s capacity i1s

fixed as reflected 1in the number of preferences 1s fixed, the
system uses 1ts capacity intelligently and converges to an

estimated maximum of future reward;
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; \ — No direct access to previous experience — while the model
__. . . .
i can remember a limited amount of experience, Soar-RL
5% 3401077 10781615 16162153 2154-2650 does not have direct access to past tasks or the ability to

Track Sequence

rewind the environment -- a potential benefit of Soar that
could be incorporated in the future version.

Figure 5. Soar-RL learns (and the error rate decreases) as the
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Poster at the Workshop of Continual Learning (https://neurips.cc/Conferences/2018/Schedule?showEvent=10910 and
https://sites.google.com/view/continual2018) held at the Thirty-second Conference on Neural Information Processing
Systems (NeurlPS, 2018, https://neurips.cc/), Canada, Montreal, December 7, 2018.
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