Exploring Reinforcement Learning for Mobile Percussive Collaboration

Nate Derbinsky & Georg Essl

University of Michigan

Our Research Goal

Real-time musical expression on mobile devices

NIME 2012 | Ann Arbor, MI

This Paper

Focus. collaborative percussive performance

22 May 2012

NIME 2012 | Ann Arbor, MI

This Paper

Focus. collaborative percussive performance

Can reinforcement learning (RL) adapt to

Outline

Reinforcement Learning

- What is RL?
- Why is it appropriate for mobile percussive collaboration?

System Design

- Learning agent
- Performance interface

Evaluation

- Data sets, methodology, conditions
- Results and analysis

Reinforcement Learning (RL)

Goal: action selection policy such as to maximize expected receipt of future reward

Why RL?

- Online, incremental
- Intuitive mapping
 - State: musical context
 - Actions: beat/no-beat
 - Reward: comparison to human performer

RL Design Space

Feature Selection

What aspects of the situation should inform the next decision?

Reward Signal

How, when, and to what degree to provide performance feedback for prior decisions?

Exploration

How, when, and to what extent should decisions deviate from current "best" decision?

Learning Rate

To what extent is the world considered uncertain?

System Desiderata

- Intuitive interface for human performers
 - Includes understanding agent learning

- Learning speed & quality
 - Fast
 - Fidelity, but not "robotic"

Real-time execution

System Design

- Leverages existing integration between urMus and Soar (NIME '11)
- Components
 - Learning agent
 - Performance UI
 - Learning UI
 - Collaboration UI

Using Soar in urMus

```
r = Region ()
r:SoarLoadRules (" simon -rl", " soar ")
timeWme = r: SoarCreateConstant (0, " time ",
clickcount )
r: SoarExec (" step ".. delayDecisions )
r: SoarDelete ( timeWme )
name , params = r:SoarGetOutput ()
```

Learning Agent

- Discretized time
 - Each time step is either learning or performing

- SARSA online TD-Learning
 - Reward: +1/-1
 - Discount (γ): 0.9
 - Learning (α): variable
 - Exploration: Boltzmann, variable temperature (τ)

User Interface

- Performance
 - Visual + Auditory
- Learning
 - Visualization
 - Control
- Collaboration
 - Human + Agent
 - Zeroconf Networking

Evaluation

- 5 drum patterns (16b)
- 10 training trials
- 125,000 data points
- Feature representation
 - Absolute time (based upon data*)
- Noise models
 - None (baseline)
 - Point error (10%, 35%, 25%)
 - Systemic error (10-30%)
- Metrics
 - Accuracy (% match input)
 - Reactivity (max decision)

Learning vs. Improvisation

Avg. Accuracy vs. Trials (by L-rate, α =0.1-0.9)

Summary

Developed and evaluated real-time, collaborative percussive system for mobile devices

- urMus + Soar
- Learning via reinforcement

Explored design space ala musical expression

 Feature representation (context), exploration (improvisation), learning rate (speed), ...

Future work

Expanding rhythmic representation!

Thank You:)

Questions?