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Our Research Goal

Real-time musical expression on mobile devices
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This Paper

Focus. collaborative percussive performance

AL

22 May 2012 NIME 2012 | Ann Arbor, Ml




This Paper

Focus. collaborative percussive performance

e Can reinforcement learning (RL) adapt to
participants lec
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Outline

Reinforcement Learning

e What is RL?
e Why is it appropriate for mobile percussive collaboration?

System Design

e Learning agent
e Performance interface

Evaluation

e Data sets, methodology, conditions
e Results and analysis
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Reinforcement Learning (RL)

Goal: action selection policy such as to maximize
expected receipt of future reward
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Why RL?

* Online, incremental

* Intuitive mapping
— State: musical context
— Actions: beat/no-beat

— Reward: comparison to human performer



RL Design Space

Feature Selection
What aspects of the situation should inform the next decision?

Reward Signal

How, when, and to what degree to provide performance feedback
for prior decisions?

Exploration

How, when, and to what extent should decisions deviate from
current “best” decision?

Learning Rate
To what extent is the world considered uncertain?



System Desiderata

* |ntuitive interface for human performers
— Includes understanding agent learning

* Learning speed & quality
— Fast
— Fidelity, but not “robotic”

e Real-time execution



System Design

* Leverages existing integration between urMus
and Soar (NIME ‘11)
* Components
— Learning agent
— Performance Ul
— Learning Ul
— Collaboration Ul
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Using Soar in urMus

r = Region ()
r:SoarLoadRules (" simon -rl", " soar "

timeWme =r: SoarCreateConstant (0, " time ",
clickcount )

r: SoarExec (" step ".. delayDecisions )
r: SoarDelete ( timeWme )
name , params = r:SoarGetOutput ()



Learning Agent

* Discretized time
— Each time step is either learning or performing

* SARSA online TD-Learning
— Reward: +1/-1
— Discount (y): 0.9
— Learning (a): variable
— Exploration: Boltzmann, variable temperature (1)



User Interface
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* Performance
— Visual + Auditory

* Learning
— Visualization
— Control

e Collaboration
— Human + Agent
— Zeroconf Networking

15



7 (hiddenIP2)
Discover: OpenJam

(hiddenIP1)

7 (hiddenlP1)
Advertise: OpenJam

(hiddenIP1)

7 (hiddenliP4)

Discover: OpenJam ? (hiddenlIP3)

Discover: OpenJam

22 May 2012 NIME 2012 | Ann Arbor, Ml 16



Evaluation

5 drum patterns (16b)
e 10 training trials
e 125,000 data points

* Feature representation
— Absolute time (based upon data®)

* Noise models
— None (baseline)
— Point error (10%, 35%, 25%)
— Systemic error (10-30%)

* Metrics
— Accuracy (% match input)
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Learning vs. Improvisation
Avg. Accuracy vs. Trials (by L-rate, 0=0.1-0.9)

1
“Wild” 0.5 & - - - -, - ~
=10
0
1 2 3 4 5 6 7 8 9 10
1
_ - - —
Fast & Adaptive 0.5 7
=1
0
1 2
1 = -
“Robotic” 0.5 All decisions < 9.84
1=0.1 milliseconds!
0




Summary

Developed and evaluated real-time, collaborative
percussive system for mobile devices

— urMus + Soar
— Learning via reinforcement

Explored design space ala musical expression

— Feature representation (context), exploration
(improvisation), learning rate (speed), ...

Future work
— Expanding rhythmic representation!



Thank You :)

Questions?



