Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

Cognitive Architecture in Mobile Music Interactions

Nate Derbinsky
Computer Science & Engineering Division
University of Michigan
2260 Hayward Ave
Ann Arbor, MI 48109-2121
nlderbin@umich.edu

ABSTRACT

This paper explores how a general cognitive architecture can
pragmatically facilitate the development and exploration of
interactive music interfaces on a mobile platform. To this
end we integrated the Soar cognitive architecture into the
mobile music meta-environment urMus. We develop and
demonstrate four artificial agents which use diverse learning
mechanisms within two mobile music interfaces. We also
include details of the computational performance of these
agents, evincing that the architecture can support real-time
interactivity on modern commodity hardware.

Keywords

mobile music, machine learning, cognitive architecture

1. INTRODUCTION

How can contemporary work in machine learning and cog-
nitive architectures be used in mobile music interactions?
Here we integrate a contemporary cognitive architecture
with an emerging mobile music environment and show the
pragmatic use of various learning stategies in this context.

The introduction of interactive music-making techniques
has shown some impressive outcomes. Fiebrink et al [6]
have demonstrated that supervised machine learning can
be used to define interactive gesture-based music applica-
tions on laptops. However the introduction of comparable
ideas to mobile music interaction is lacking. Current mo-
bile smart devices are different from laptops in the kinds
of interactions that are natural to perform on them and
the kinds of sensors that are available on them. For exam-
ple hand gestures are a rather natural mode of engagement
with a mobile device, whereas accelerometer-based interac-
tions on laptops are possible but have a distinctly different
flavor. Further mobile smart devices are available to a larger
demographic than laptops suggesting the need to support
them as primary computational platforms [4].

In this paper, we explore interactive learning and musical
expression on mobile devices. In contrast to prior work
that applied specialized machine learning algorithms, we
use a cognitive architecture, a system that efficiently and
generally integrates multiple learning and memory modules
for use across numerous tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’11, 30 May-1 June 2011, Oslo, Norway.

Copyright remains with the author(s).

104

Georg Essl

Electrical Engineering & Computer Science and

Music
University of Michigan
2260 Hayward Ave
Ann Arbor, Ml 48109-2121
gessl@eecs.umich.edu

2. COGNITIVE ARCHITECTURE

The central goal of artificial intelligence is the development
and understanding of intelligent agents, autonomous enti-
ties that observe and act within an environment, applying
human-level reasoning capabilities to achieve their goals.
Many researchers in the field, however, do not work directly
at the level of generally intelligent agents, but instead strive
to understand one or more sub-problems in specific con-
texts, such as machine learning, the study and development
of algorithms to find patterns in empirical data; planning
and reasoning, especially under uncertainty; and computa-
tional processing and generation of natural language.

By contrast, research into cognitive architecture aims to
develop and understand human-level intelligence across a
diverse set of tasks and domains [8]. A cognitive archi-
tecture is a specification of those aspects of cognition that
remain constant throughout the lifetime of an agent. These
fixed components include short- and long-term memories
of the agent’s beliefs, goals, and experience; the represen-
tation of elements contained within these knowledge stores;
functional processes that apply agent knowledge to produce
behavior; and learning mechanisms that adapt agent knowl-
edge over time. Cognitive architecture applies a systems-
level approach to artificial intelligence research, investigat-
ing how the integration of numerous computational mecha-
nisms supports complex and adaptive behavior.

Diverse cognitive architectures have been developed over
the last forty years, but nearly all specific cognitive architec-
ture research efforts strive towards at least one of the follow-
ing three goals: (1) biological plausibility, (2) psychological
plausibility, and (3) agent functionality. For instance, sys-
tems such as Leabra [10] attempt to computationally ex-
plore how intelligence arises from circuits of neurons and
how architectural mechanisms and processes correspond to
neurobiological data regarding brain regions and topologi-
cal connectivity. By contrast, systems such as EPIC [9] and
ACT-R [1] are typically applied at a layer above biological
mechanisms and attempt to capture and model details of
human performance, such as behavioral timing and mem-
ory recall errors, in a wide range of cognitive tasks. Finally,
architectures like Soar [7] strive to understand how human-
level intelligence arises from computational architecture and
are typically applied as an effective path to building broadly
capable artificial agents.

There are two primary appeals of considering cognitive
architectures for music performance. The first involves qual-
ity of interaction with a learning system. The response of
an interaction may involve familiar characteristics, such as
remembering or forgetting musical phrases. Agent function-
ality can offer the appearance of such cognitive function in a
way that a performer can potentially relate to, hence mak-
ing the machine learning process itself more intuitive. The
second reason is one of development pragmatism. Typical

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

Symbolic Long-Term Memories
Episodic

Semantic
A
Reinforcement || Chunking Semantic Episodic
Leamning Learning Leaming
A A

k.
]
Symbolic Short-Term Memory

[— ¢<\'\
LT Visual Memery
A 4

| Perception |q_>[ST Visual Imagery Jq_>| Action |

Body

Procedural

= e
24
£s
58]
<0

T o
z g
iy
ED
m!

Figure 1: The structure of the Soar cognitive archi-
tecture.

applications of machine learning techniques involve special-
ized algorithms and thus there is significant burden on de-
velopers to implement one or more algorithms, tune them
for a particular task, including any integration issues that
arise, and finally employ optimization techniques such that
the algorithms scale to complex problems, an especially dif-
ficult challenge on mobile platforms. These burdens are less-
ened with the application of cognitive architecture wherein
the locus of development is declaring agent knowledge and
goals.

In addition to research goals, individual cognitive archi-
tectures deviate along numerous dimensions. We consid-
ered two metrics in selection of the candidate architecture.
First, to explore complex musical expression, we sought an
architecture that could process over, as well as reason and
learn about, diverse information sources, including tempo-
ral sequences of musical notes and declarative rules of music
composition. Second, to support interactive mobile tools,
we we sought an architecture that could bring these knowl-
edge sources to bear while maintaining real-time decision
making. Thus, we applied and evaluated Soar [7], a func-
tionally driven cognitive architecture.

3. SOAR

Soar is a cognitive architecture that has been used exten-
sively for developing artificial intelligence applications and
modeling human cognition. One of Soar’s main strengths
has been its ability to efficiently represent and bring to bear
large bodies of symbolic knowledge to solve diverse problems
using a variety of methods [7]. Soar supports a variety of
programming languages (such as C++, Java, and Python)
on all major operating systems (including Windows, Mac
OS, Linux, and i0S) and has been interfaced in diverse ex-
ecution environments, including game systems and robotics
simulation and hardware platforms.

Figure 1 shows the structure of Soar. At the center is a
symbolic working memory, represented as a graph, that cap-
tures the agent’s current state. Perception from the world,
such as sights, sounds, or contact, delivers symbolic struc-
tures to working memory. The long-term memories retrieve
information based on the contents of this working memory
and add, delete, or modify these structures. The procedu-
ral memory, encoded as if-then rules, captures the agent’s
knowledge of when and how to perform actions, both inter-
nal, such as deliberately querying other long-term memo-
ries, and external, such as the production of sound through

105

speakers or control of robotic actuators. This knowledge can
be tuned over time by the integrated reinforcement learning
[11] mechanism, which adjusts the selection of actions in an
attempt to maximize receipt of reward. The semantic long-
term memory encodes general facts about the world, which
may be pre-loaded from existing knowledge bases, while
episodic memory incrementally builds an autobiographical
history of agent experience. As evident in Figure 1, Soar
has additional memories and processing modules; however,
they are not evaluated in this paper, and are not discussed
further.

Processing in Soar is decomposed into a sequence of de-
cisions. The basic decision cycle is to process input, fire
rules that match, make a decision, fire rules that apply the
decision, and then process output commands and retrievals
from long-term memory. The time to execute this process-
ing cycle determines reactivity and so our evaluation will
include (1) the number of decisions that were made to com-
plete the task, (2) the average amount of time to execute
each cycle, (3) the maximum amount of time required for
any cycle, and (4) the total CPU time consumed by the
Soar agent completing the task.

4. INTEGRATING SOAR IN URMUS

UrMus [5] is set up to provide a flexible system to receive
input and organize visual and other content in response.
The main organizing element for multi-touch input as well
as visual output are regions. They allow maximum flex-
ibility in designing interactions. Hence it felt natural to
associate an instance of Soar with regions. Each region can
have an instance of Soar attached, hence one can have one
or more agents for each input element and agents for each
movable visual element. Other media elements can be re-
alized by having region-based events instantiate Flowboxes
(elements of UrMus’s dataflow engine). This means it is
easy to have objects that independently navigate, say, the
screen-space to have independent cognitive models running.

The Soar kernel is implemented in C++ and we have in-
tegrated the architecture with urMus via a minimal Lua in-
terface that allows urMus to supply perception to the agent,
including touch events from the user, read actions decided
upon by the agent, such as producing a note, and execute
arbitrary commands, such as to control the agent’s run state
and illicit debugging and computational performance infor-
mation.

To see how this works, let us consider the following simple
example code. As said, each region can have a Soar agent
attached to it. In order to do anything meaningful, this
agent will need a rule set to be loaded:

r = Region()

r:SoarLoadRules ("simon-rl", "soar")

In order to learn, a percept (in form of a symbolic con-
stant) is created in Soar’s input data structure and a learn-
ing step is executed. In this case a notion of time is learned
that is derived from a user interaction. The input is deleted
when done:

r:SoarCreateConstant (0,

"time", clickcount)
r:SoarExec("step "..delayDecisions)
r:SoarDelete (timeWme)

timeWme =

In order to generate output after learning, one can read
the output from Soar’s output data structure:

taskWme = r:SoarCreateConstant (0,
"task", "generate")
name, params = backdrop:SoarGetOutput ()

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

S
H

Figure 2: Simon demonstration with example in-
put/output sequences.

g
3

RL Fast

RLSlow

result = params.output
r:SoarSetOutputStatus (1)
r:SoarDelete (taskWme)

Here output is the entry of interest. There are also other
functions that help control a Soar agent, such as halting the
agent with the r:SoarFinish() function and reinitializing
the agent anew with the r:SoarInit() command.

S. DEMONSTRATIONS

We now present two musical demonstrations implemented
in the UrMus environment [5] using Soar 9 [7] and deployed
to the iOS platform on iPhone, iPad, and iPod Touch hard-
ware. These tools are not intended to represent state-of-
the-art music interface design, but instead demonstrate how
cognitive architecture can facilitate the development of in-
teractive, novel musical tools on mobile platforms.

5.1 Simon

Our first demonstration was to implement Soar agents play-
ing Simon, a game of memory skill [2] illustrated in Figure
2. In this demonstration, the user inputs a sequence, se-
lecting from four colored buttons, each of which emits a
different musical tone. The button presses are provided to
the Soar agent sequentially in real-time and after input is
complete, the Soar agent generates an arbitrary length of
musical response, based upon its knowledge and learning
of the input stream. The focus of this demonstration is to
explore how utilizing different memory models, both short-
and long-term, can affect development of musical interfaces.
For clarity, the Soar cognitive architecture is held constant
for all demonstration agents below, whereas the agent’s ini-
tial procedural knowledge, encoded as if-then rules, is what
is altered such as to distinguish each agent’s behavior.

In this task, our first evaluation metric was accuracy of
the agent’s response - to what extent does the agent repro-
duce the input sequence? While a challenge for humans,
especially over long input sequences, one could imagine ba-
sic algorithms that could store and generate a fixed length
button string. Thus, our second, more interesting evalua-
tion dealt with output generativity, or the degree to which
the agent could produce novel output, while adhering to the
“spirit” of the input sequence.

The first agent we developed appended new button in-
puts to an endless linked list within the agent’s working
memory. As expected, the result of this agent was perfect
input reproduction, at the cost of learning no generaliza-
tion over the input. After receiving input and producing an
output sequence of 10 buttons, the agent required 415 deci-
sion cycles, averaging 0.053 milliseconds per decision with a
maximum of 1 millisecond for a decision, for a total of 0.022
CPU seconds.

The next agent applied an instance-based learning ap-

106

nil a a b b c

Figure 3: Simon semantic memory representation.

proach, storing all inputs to its semantic memory. We
encoded each note as a simple (previous note, next note)
pair and thus generation of new musical sequences simply
retrieved the “next” note conditioned upon the last note
played. Figure 3 captures the state of the agent’s semantic
memory after it had heard the sequence of three notes: A,
B, C (where one/two refer to previous/next and nil refers
to the beginning of the sequence). For very short, distinct
button sequences (fewer than four buttons, no repetition),
it is possible for the agent to perfectly reproduce the input.
However, the common case is for ambiguities to arise in the
input sequence, which are disambiguated via a recency bias
in memory retrieval [3]. This agent required 278 decisions
at an average of 0.086 milliseconds per decision, requiring a
maximum of 1 millisecond in a decision, for a total of 0.024
seconds of CPU time.

Our final agent applied Soar’s reinforcement learning mech-
anism to this memory task. During the user’s input, the
agent “practiced” the known sequence, given the same state
representation as the semantic memory agent, self-rewarding
for reproducing the correct input. For instance, the follow-
ing rule captures some practiced knowledge after the agent
heard the sequence of three notes: A, B, C.

If

no previous note was heard AND

the agent is considering producing note C
Then

the expected value of this decision is -5

The value at the conclusion of the rule was updated over
time based upon experience and practice. The amount of
practice was directly proportional to the amount of time
between user inputs. As a result, the generated musical
output was affected by the sequence of buttons the user
pressed, the time taken to input the sequence, and the prob-
abilistic application of the agent’s learned music generation
policy. We found that given enough time between button
presses (about 1 second), the agent would frequently repro-
duce most of the initial input sequence, while occasionally
deviating to produce novel, probabilistically derived sub-
sequences. We provided the same input sequence to the
agent twice, varying only the amount of time between but-
ton presses (such as to change available practice time). The
agent given little practice ran for 827 decisions, averaging
0.145 milliseconds per decision with a maximum of 1 mil-
lisecond for a decision, totally 0.120 seconds of CPU time.
The agent with more time ran for 1133 decisions, averag-
ing 0.176 milliseconds per decision with a maximum of 1
millisecond, totalling 0.199 seconds of CPU time.

The agent performances in the Simon demonstration are
summarized in Figure 2 for a particular input sequence
(“Training). The working memory (“WM?”) agent perfectly
reproduces the input, as it cannot generalize. The seman-
tic memory agent (“SMem”), with a limited instance-based
representation, primarily reproduces the input (as seen in
Figure 2), with small deviations when the next note is not
uniquely determined by the previous note. The reinforce-
ment learning agent is shown with two amounts of practice

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

Training Output 1 Output 2
Chord Melody Chord Melody Chord Melody
| EGGE | GGGC | GGGC
Vv DGGD V CGGG V CGGG
\ CEEC VI CCEC VI CCEC
Il BEEB V DCDD V DCDD
v ACCA VI ECEC VI ECEC
| GCCG
v ACCE
Vv DCDD

Figure 4: The interface of the music generation ur-
Mus/Soar implementation (left). Training and two
generated results using the reinforcement learning.

time (“RL Fast” and “RL Slow”), illustrating probabilistic
differences from the training sequence. If the learning time
is fast the sequence is more likely to deviate from transi-
tions seen in learning, whereas longer learning will reinforce
transitions that are seen frequently hence lead to sequences
that more closely resemble the original. However, these
models are probabilistic and hence do not guarantee repro-
duction. For musical purposes this is interesting because it
means that learning the rules of production are reinforced
but variation is retained.

5.2 Mobile Music Generation and Interaction

Our next demonstration tasked the agent with generating
simple musical scores after perceiving a sequence of chords
accompanying musical notes (see interface in Figure 4). To
simplify the quantization problem, the time scale of the in-
put was fixed (one chord per 4 notes). Once again, our
evaluation considered both the accuracy of music reproduc-
tion, as well as novelty of musical generation.

For this demonstration, we extended our reinforcement
learning agent from the Simon task such as to simultane-
ously learn chord sequencing, note sequencing, and note-
chord association. The following are two representative
rules learned by the agent:

If
the
the
the
Then
the

current chord is C-E-G AND
previous note played was G AND
agent is considering producing note C

expected value of this action is -8

If
the
the
Then
the expected value of this decision is -8

previous chord was C-E-G AND
agent is considering chord E-G-B

The agent’s practice time (limited by real-time interac-
tion with the user) was split between learning chord se-
quencing, note sequencing, and note-chord association. We
found that given sufficient “practice” time (about 100 deci-
sions between notes), the Soar agent was able to associate
notes with chords and produce similar chord sequences as
the input, though note sequencing was unimpressive in re-
production, nor generative quality. In this task, our agent
required 360 decisions, averaging 0.217 milliseconds per de-
cision and requiring a maximum of 1 millisecond for a deci-
sion and a total of .118 seconds of CPU time.

An example training set of eight chords with four note
monophonic melodies each and two generated outputs of
five chords with four note melodies each are shown in Figure
4. Each run of Soar will generate a new output and note

107

that the adherence to learned rules is not yet very strict.
Notes that do not strictly belong to the underlying chord
are played. The training set contains one such exception.
With repeated training the melodies become more reflective
of the input. This model can be run offline or interactively
in a call and response scheme. The user plays a chord and
four notes and the system will generate the same based on
what it has learned so far. Over time the call and response
duet locks into a more stable style as the learning algorithm
reinforces the observed rules of the played call melodies.

6. CONCLUSIONS

In this paper we showed how the integration of a cognitive
architecture and a mobile music platform can lead to novel
forms of interactive music expression. We developed two
systems that demonstrate how interactive musical tools can
benefit from complex, integrated applications of machine
learning algorithms (such as reinforcement learning) and
instance-based learning (such as declarative retrievals from
semantic memory). We also showed that the Soar cognitive
architecture is sufficiently efficient to support interactive
musical tools on a mobile platform. These demonstrations,
however, do not begin to explore the space of possibilities
a cognitive architecture offers to the development of novel
mobile musical tools.

7. REFERENCES

[1] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass,
C. Lebiere, and Y. Qin. An Integrated Theory of the
Mind. Psychological Review, 111:1036—-1060, 2004.

R. H. Baer and H. J. Morrison. Microcomputer
Controlled Game - US Patent 4,207,087, 1980.

N. Derbinsky, J. E. Laird, and B. Smith. Towards
Efficiently Supporting Large Symbolic Declarative
Memories. In Proceedings of the 10th International
Conference on Cognitive Modeling, 2010.

G. Essl. Mobile Phones as Programming Platforms.
Proceedings of the First International Workshop on
Programming Methods for Mobile and Pervasive
Systems, 2010.

G. Essl. UrMus-an environment for mobile instrument
design and performance. Proceedings of the
International Computer Music Conference, 2010.

R. Fiebrink. Real-time human interaction with
supervised learning algorithms for music composition
and performance. Disseration, Princeton University,
2011.

J. E. Laird. Extending the Soar Cognitive
Architecture. In Proceedings of the First Conference
on Artificial General Intelligence, Memphis, TN,
2008. IOS Press.

P. Langley, J. E. Laird, and E. Rogers. Cognitive
Architectures: Research Issues and Challenges.
Cognitive Systems Research, 10(2):141-160, 20009.

D. E. Meyer and D. Kieras. A Computational Theory
of Executive Control Processes and Human
Multiple-Task Performance. Part 1: Basic
Mechanisms. Psychological Review, 1997.

R. C. O’Reilly and Y. Munakata. Computational
Ezplorations in Cognitive Neuroscience:
Understanding the Mind by Simulating the Brain.
MIT Press, Cambridge, MA, 2000.

R. S. Sutton and A. J. Barton. Reinforcement
Learning: An Introduction. 1998.

2]
8l

[5]

(6]

(8]

(9]

(10]

(1]

