
Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Testing Fine-Grained Parallelism
for the ADMM on a Factor-Graph

Nate Derbinsky
Wentworth Institute of Technology

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

1

Ning	
Hao
Oracle

AmirReza
Oghbaee

Northeastern

Mohammad	
Rostami
UPenn

José
Bento

Boston	College

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

The Problem
• Large-scale optimization problems

– Many hard/soft constraints
– Many discrete/continuous variables
– Often not smooth/convex

• Diverse applications: vision/imaging, robotics,
machine learning, …

• Thus, we need tools that balance
– Problem independence
– Ease of use
– Efficiency/scalability

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

2

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Our Framework: parADMM
• General optimization via the Alternating Direction

Method of Multipliers (ADMM)
– State-of-the-art performance on numerous tasks

• Automatically exploit CPU/GPU parallelism given
user’s serial code
– Written in C; integrates CUDA, OpenMP

• Empirical GPU/CPU speedup results
– Packing
– Optimal control
– Machine learning (SVM)

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

3

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Optimization Problem

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

4

…

…

vn#fm#

f2#

f1# v1#

Factor	Graph

Objective/Cost	Function
Hard

Soft

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Example: Packing
Fit n circles of radius r in a square of side-length s
without overlap (non-convex, NP-hard, ∞ solutions)

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

5

2

3

11

3

2

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Packing Objective

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

6

Box(x)

= 0

= 1

Collision(x, x

0
)

= 0

= 1

minimize

x1,x2,x3

: Box(x1) + Box(x2) + Box(x3) + aaaaaaaaaaaaaaaaaaa

Collision(x1, x2) + Collision(x2, x3) + Collision(x1, x3)

B1

B2

B3

C12

C23

C13

X1

X2

X3

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

ADMM
Alternating Direction Method of Multipliers [Boyd et al. ‘11]

General
• Arbitrary objective functions, constraints, and variables
• Global minimum for convex problems (and demonstrably successful

for non-convex as well)
• If converges, produces a feasible solution (all hard constraints met)

Interruptible
• Iterative algorithm; intermediate results can serve as heuristic start

for complementary approaches

Scalable and Parallelizable
• Formulated as a decomposition-coordination problem;

leads naturally to concurrency at multiple levels
(e.g. MapReduce, multi-core, GPU)

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

7

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Message-Passing ADMM
[Derbinsky et al. ‘13]

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

8

B1

B2

B3

C12

C23

C13

X1

X2

X3

=

=

=

x
z

Cumulative Disagreement

u

x	+	u z	- u

u = u+ ↵(x� z)

Balance function cost
and projection cost

w.r.t. weightin

Msg to right Msg to left

1. Left
2. Right
3. Update	u
4. Convergence	

check

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Example parADMMProgram
 graph Cpu_graph; !// bipartite graph in the CPU!
 graph Cpu_Gpu_graph; !// interface between CPU and GPU graph!
 graph* Gpu_graph; !// bipartite graph in the GPU!
 cudaMalloc((void **) &Gpu_graph , sizeof(graph));!
!
 startG(&Cpu_graph, number_of_dims_per_edge); !// initialize empty CPU graph!
 !
 // add nodes to the bipartite graph!
 int index_of_variables_1[] = {1,2,3}; int number_of_variables_1 = 3;!
 int index_of_variables_2[] = {1,4,5}; int number_of_variables_2 = 3;!
 int index_of_variables_3[] = {2,5}; int number_of_variables_3 = 2;!
 int index_of_variables_4[] = {5}; int number_of_variables_4 = 1;!
!
 addNode(&Cpu_graph, proximal_operator_1, (void *) parameters_1,

!size_parameters_1, !number_of_variables_1, index_of_variables_1);!
 addNode(&Cpu_graph, proximal_operator_2, (void *) parameters_2,

!size_parameters_2, !number_of_variables_2, index_of_variables_2);!
 addNode(&Cpu_graph, proximal_operator_3, (void *) parameters_3,

!size_parameters_3, !number_of_variables_3, index_of_variables_3);!
 addNode(&Cpu_graph, proximal_operator_4, (void *) parameters_4,

!size_parameters_4, !number_of_variables_4, index_of_variables_4);!
 !
 // set the rhos and alpha values (all equal)!
 initialize_RHOS_APHAS(&Cpu_graph, rho, alpha);!
 !
 // initialize the ADMM variables (at random between lower and upper bound)!
 initialize_X_N_Z_M_U_rand(&Cpu_graph, lower_bound, upper_bound, lower_bound,

!upper_bound, lower_bound,upper_bound, lower_bound, upper_bound, lower_bound,
!upper_bound);!

 !
 // initialize the Cpu_Gpu_graph using the GPU graph!
 copyGraphFromCPUtoGPU(Cpu_graph, &Cpu_Gpu_graph, Gpu_graph);!
 !
 // iterate the ADMM!
 for (int i = 0; i< numiterations; i++)!
 {!

!updateXGPU<<< ... , ... >>>(GPU_graph);!
 !updateMGPU<<< ... , ... >>>(GPU_graph);!
 !updateZGPU<<< ... , ... >>>(GPU_graph);!
 !updateUGPU<<< ... , ... >>>(GPU_graph);!
 !updateNGPU<<< ... , ... >>>(GPU_graph);!
 }!
 !
 // copy the variables Z from the GPU graph to the CPU graph!
 cudaMemcpy(Cpu_graph.Z , Cpu_Gpu_graph.Z , CPU_graph.num_dims *

!CPU_graph.num_vars * !sizeof(double),cudaMemcpyDeviceToHost);!
 !
 ...!
!
!
!
!

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

9

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Example Proximal Operator

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

10

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Example Packing Solution

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

11

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Fine-Grained Hypothesis
• When applying ADMM, problem

decomposition is user-defined
– Typically involves relatively few & large [with

parallelism within factors], which may be useful in
MapReduce-like context

• Our hypothesis: efficient and automatic
parallelization via many & small factors (1
thread per factor)
– Bonus: the user needs only implement factor

logic using serial code, typically quite simple

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

12

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Empirical Evaluation
• AMD Opteron Abu Dhabi 6300 @ 2.8GHz

– Up to 32 cores, 128GB memory
– pragma openmp parallel for

• NVIDIA Tesla K40
• Ubuntu

• Numerical results in three domains
– Focus: speedup with problem size

• No change to factor code
• Minimal change to graph-creation code

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

13

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Packing Circles in a Triangle

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

14

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Phase Breakdown

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

15

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Model Predictive Control (MPC)

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

16

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Binary Classification via SVM in ℝ"

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

17

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Conclusions
• We achieve problem-independent scaling

with user-supplied serial code
– Multi-core CPU (5-6x with 32-cores)
– GPU (10-18x; comparable with other GPU-

accelerated libraries)

• Future work
– Improved work-scheduling/topology
– Multiple GPU/computer, asynchronous ADMM

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

18

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

Additional Details in the Paper
• Classic ADMM formulation
• parADMM internals

– Includes CUDA, OpenMP parameterization
• Survey of related tools/frameworks
• Empirical evaluation

– Problem formulation
– Analysis of results

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

19

Wentworth Institute of Technology PCO | IPDPS 2016 | Nate Derbinsky

The End :)
Questions?

https://github.com/parADMM/engine

May 23, 2016

Testing Fine-Grained Parallelism for the ADMM on a Factor-Graph

20

Ning	
Hao
Oracle

AmirReza
Oghbaee

Northeastern

Mohammad	
Rostami
UPenn

José
Bento

Boston	College

