

A Year of Episodic Memory

John E. Laird and Nate Derbinsky University of Michigan

1

- Episodic Memory
 - What is It
 - Why is It Important
- The Challenge
 - Statement and Focus
 - Bounds and Requirements
- Conclusions
 - Future Work
 - Review and Discussion

uly 11, 2009

- Episodic Memory
 - What is It
 - Why is It Important
- The Challenge
 - Statement and Focus
 - Bounds and Requirements
- Conclusions
 - Future Work
 - Review and Discussion

uly 11, 2009

CSE

What is Episodic Memory?

- Long-term, contextualized store of specific events
 - Tulving, E.: Elements of Episodic Memory (1983)
- Functionally
 - Architectural
 - Automatic
 - Autonoetic
 - Temporally indexed

Computer Science and Engineering at Michigan

Episodic Operations

Episodic Operations

Comparison to CBR

CBR

CSE

<u>Cases</u>

- Contain problems and solutions
- Fields pre-specified

Case Base

- Fixed or slowly growing
- Deliberate updates
- No temporal relation between cases

EpMem

<u>Episodes</u>

- Structure and content reflect agent's experiences
 - Potentially fine-grain

Episodic Store

- Grows with experience
- Architectural & automatic storage
- Temporally structured

The Promise of EpMem

- Episodic memory has the potential to support cognitive capabilities across
 - Sensing
 - Reasoning
 - Learning

Nuxoll, A.: Enhancing Intelligent Agents with Episodic Memory. (2007)

Sensing

Virtual Sensing

CSE

 retrieving past sensing of features outside current perception that is relevant to the current task

Detecting Repetition

 realizing when you are repeating the same series of actions and altering your behavior as a result

Reasoning

Action Modeling

 predicting the immediate outcome of your actions

Managing Long Term Goals

 keeping track of a plan and what steps in that plan have been accomplished so far

Learning

Retroactive Learning

 reviewing experiences and learning from them when sufficient resources become available

"Boost" Learning

 provide a database of knowledge that can be manipulated by other learning mechanisms

- Episodic Memory
 - What is It
 - Why is It Important

The Challenge

- Statement and Focus
- Bounds and Requirements
- Conclusions
 - Future Work
 - Review and Discussion

uly 11, 2009

CSE

The Challenge

- One year of continual use of episodic memory
 - Embedded within an agent living an "interesting" life
 - Learning about multiple challenging tasks
 - Dynamic environment
- Focus: <u>efficiently</u> support specific functional capabilities related to <u>storing</u>, <u>maintaining</u>, and <u>retrieving</u> experiences

Efficiency Issues

- Bounded Storage
 - Memory is cheap, plentiful, but not unlimited

- Bounded Retrievals
 - Complex, dynamic environments impose real-time constraints on agents
 - Episodic storage and retrievals must...
 - Not interfere with agent's ability to respond in the world

17

Retrieve information quickly enough to be useful

Bounded Storage

Naïve Implementation

Time	Working Memory		Epi	sodic St	ore
1		Altern The second secon	1	010	
2			1	2	0101
3			1	2	3
July 11, 2009	19	Computer Science	and Engin	eering at N	lichigan

Cost of Storage

cost =	(time)	(frequency)	(ep size)	(representation)
bytes	sec	ep/sec	features/ep	bytes/feature

A Year of Storage

- Assume 16 hours waking activity/day
- (1 year)(365 day/year)(16 hour/day)(3600 sec/hour)
- ~ 21M sec

Frequency of Storage

Historical detail vs. efficiency

CSE

- An accurate episodic record demands capturing all structural and feature changes that have occurred since the last recorded episode
 - Worst case: reproduce all structure/features
 - Frequency is a linear multiplier of this cost
- Worst case: 50 ms (20 ep/sec)
- Best case: 500 ms (2 ep/sec)

22

Feature Storage

- A rich environment suggests a large representation of the current situation
 - Best case: 100 features
 - Worst case: 1000 features
- Real-world environments demand rich, relational descriptions to adequately express arbitrary, complex structures
 - Best case: 10 bytes/feature
 - Worst case: 100 bytes/feature

Cost of Storage: Revisited

cost =	(time)	(frequency)	(ep size)	(representation)
bytes	sec	ep/sec	features/ep	bytes/feature

Best Case

CSE

- 21M sec
- 2 ep/sec
- 100 features/ep
- 10 bytes/feature
- 42GB

Worst Case

- 21M sec
- 20 ep/sec
- 1000 features/ep
- 100 bytes/feature
- 42TB

Storage Summary

- 42GB 42TB
- Low end can fit entirely in commodity server main memory
 - Thus storage alone probably not limiting factor
- Due to simple encoding, 2 20 episodes/sec is well within capabilities of current processors

CSE Bounded Retrievals

Match a <u>cue</u> against episodic store, retrieve best match

What Bounds Retrievals?

- In dynamic environments, a memory will lose its utility if not retrieved within some limited amount of time after cue initiation
- Assume episodic retrievals have a <u>dedicated</u> processor that can process a single retrieval in *parallel* to primitive decisions
 - Bound = (decision time) (utility w.r.t. world dynamics)
 - Assume decision time: 50 ms
 - Assume utility: 20 decisions
 - Fixed bound: 1 sec

Worst Case Retrieval Cost

- Linear scan = (data to scan) (time/datum)
- Best case

- 42 GB of data
- Assume 2GHz CPU
- Time after 1 year: 20 sec
 - Worst case is 1000x

Retrieval Summary

- Utility bound: **1 sec**
- Linear scan: **20 sec**
- <u>Real issue</u>
 - How to effectively organize episodic data, incrementally as it is learned over a year, such that it can be searched in <u>bounded time</u>

- Episodic Memory
 - What is It
 - Why is It Important
- The Challenge
 - Statement and Focus
 - Bounds and Requirements

Conclusions

- Future Work
- Review and Discussion

uly 11, 2009

CSE

Thoughts on Approaches

- Technology (hardware)
 - Custom, content-addressable memories
 - Massive parallelism
- Algorithms
 - Compression from exploiting repeated structure
 - Gains from exploiting temporal regularities
 - Only process changes
 - Clever data structures/algorithms to maintain best match
 - NN still linear in worst case

Derbinsky, N., Laird, J.E.: Efficiently Implementing Episodic Memory (2009)

uly 11, 2009

CSE

Thoughts on Approaches (2)

- Heuristic retrieval strategies
 - History compression
 - Fast familiarity (via locally sensitive hashing)
 - Forgetting/consolidation
 - Query caching/optimization ala RDBMS
- Evaluation: efficiency vs. proficiency

Review the Challenge

- Endowing an agent with an episodic memory provides knowledge to support a vast array of cognitive capabilities crucial for intelligent behavior
- Our challenge: a <u>year</u> of continuous episodic memory in an agent living an *interesting* life
 - Storage: 42GB 42TB
 - Linear scan: 20 sec
 - Retrieval: 1 sec
- Much work to be done: will draw on and contribute to a variety of experience-based reasoning research