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What is Episodic Memory? 

•  Long-term, contextualized 
store of specific events 

–  Tulving, E.: Elements of Episodic Memory (1983) 

•  Functionally 
–  Architectural 
–  Automatic 
–  Autonoetic 
–  Temporally indexed 
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Architectural Integration 
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Comparison to CBR 

CBR 
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•  Contain problems and 
solutions 

•  Fields pre-specified 

•  Structure and content 
reflect agent’s experiences 
•  Potentially fine-grain 

•  Fixed or slowly growing 
•  Deliberate updates 
•  No temporal relation 

between cases 

•  Grows with experience 
•  Architectural & automatic 

storage 
•  Temporally structured 
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The Promise of EpMem 

•  Episodic memory has 
the potential to 
support cognitive 
capabilities across 
–  Sensing 
–  Reasoning 
–  Learning 

Nuxoll, A.: Enhancing Intelligent Agents 
with Episodic Memory. (2007) 
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Sensing 

Virtual Sensing 
•  retrieving past sensing of 

features outside current 
perception that is relevant 
to the current task 

Detecting Repetition 
•  realizing when you are 

repeating the same series 
of actions and altering 
your behavior as a result 
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Reasoning 

Action Modeling 
•  predicting the immediate 

outcome of your actions 

Managing Long Term Goals 
•  keeping track of a plan 

and what steps in that 
plan have been 
accomplished so far 
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Learning 

Retroactive Learning 
•  reviewing experiences 

and learning from them 
when sufficient resources 
become available 

“Boost” Learning 
•  provide a database of 

knowledge that can be 
manipulated by other 
learning mechanisms 
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The Challenge 

•  One year of continual use of episodic memory 
–  Embedded within an agent living an “interesting” life 

•  Learning about multiple challenging tasks 
•  Dynamic environment 

•  Focus: efficiently support specific functional capabilities 
related to storing, maintaining, and retrieving 
experiences 
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Efficiency Issues 

•  Bounded Storage 
–  Memory is cheap, plentiful, but not unlimited 

•  Bounded Retrievals 
–  Complex, dynamic environments impose real-time 

constraints on agents 
–  Episodic storage and retrievals must… 

•  Not interfere with agent’s ability to respond in the world 
•  Retrieve information quickly enough to be useful 
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Bounded Storage 
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Naïve Implementation 

Time  Working Memory  Episodic Store 
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Cost of Storage 
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A Year of Storage 

•  Assume 16 hours waking activity/day 

•  (1 year)(365 day/year)(16 hour/day)(3600 sec/hour) 

~ 21M sec 
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Frequency of Storage 

•  Historical detail vs. efficiency 

•  An accurate episodic record demands capturing all 
structural and feature changes that have occurred since 
the last recorded episode 
–  Worst case: reproduce all structure/features 
–  Frequency is a linear multiplier of this cost 

•  Worst case: 50 ms (20 ep/sec) 
•  Best case: 500 ms (2 ep/sec) 
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Feature Storage 

•  A rich environment suggests a large representation of 
the current situation 
–  Best case: 100 features 
–  Worst case: 1000 features 

•  Real-world environments demand rich, relational 
descriptions to adequately express arbitrary, complex 
structures 
–  Best case: 10 bytes/feature 
–  Worst case: 100 bytes/feature 
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Cost of Storage: Revisited 

Best Case 
•  21M sec 
•  2 ep/sec 
•  100 features/ep 
•  10 bytes/feature 
•  42GB 

Worst Case 
•  21M sec 
•  20 ep/sec 
•  1000 features/ep 
•  100 bytes/feature 
•  42TB 
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Storage Summary 

•  42GB – 42TB 

•  Low end can fit entirely in commodity server main 
memory 
–  Thus storage alone probably not limiting factor 

•  Due to simple encoding, 2 – 20 episodes/sec is well 
within capabilities of current processors 
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Bounded Retrievals 
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Match a cue against episodic store, retrieve best match 
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What Bounds Retrievals? 

•  In dynamic environments, a memory will lose its utility if 
not retrieved within some limited amount of time after 
cue initiation 

•  Assume episodic retrievals have a dedicated processor 
that can process a single retrieval in parallel to primitive 
decisions 
–  Bound = (decision time) (utility w.r.t. world dynamics) 
–  Assume decision time: 50 ms 
–  Assume utility: 20 decisions 
–  Fixed bound: 1 sec 
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Worst Case Retrieval Cost 

•  Linear scan = (data to scan) (time/datum) 

•  Best case 
–  42 GB of data 
–  Assume 2GHz CPU 
–  Time after 1 year: 20 sec 

•  Worst case is 1000x 
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Retrieval Summary 

•  Utility bound: 1 sec 
•  Linear scan: 20 sec 

•  Real issue 
–  How to effectively organize episodic data, incrementally as it 

is learned over a year, such that it can be searched in 
bounded time 
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Thoughts on Approaches 

•  Technology (hardware) 
–  Custom, content-addressable memories 
–  Massive parallelism 

•  Algorithms 
–  Compression from exploiting repeated structure 
–  Gains from exploiting temporal regularities 

•  Only process changes 
–  Clever data structures/algorithms to maintain best match 

•  NN still linear in worst case 

Derbinsky, N., Laird, J.E.: Efficiently Implementing Episodic Memory (2009) 
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Thoughts on Approaches (2) 

•  Heuristic retrieval strategies 
–  History compression 
–  Fast familiarity (via locally sensitive hashing) 
–  Forgetting/consolidation 
–  Query caching/optimization ala RDBMS 

•  Evaluation: efficiency vs. proficiency 
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Review the Challenge 

•  Endowing an agent with an episodic memory provides 
knowledge to support a vast array of cognitive 
capabilities crucial for intelligent behavior 

•  Our challenge: a year of continuous episodic memory in 
an agent living an interesting life 
–  Storage: 42GB – 42TB 

•  Linear scan: 20 sec 
–  Retrieval: 1 sec 

•  Much work to be done: will draw on and contribute to a 
variety of experience-based reasoning research 
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