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Abstract 

Effective management of learned knowledge is a challenge 
when modeling human-level behavior within complex, 
temporally extended tasks. This paper evaluates one approach 
to this problem: forgetting knowledge that is not in active use 
(as determined by base-level activation) and can likely be 
reconstructed if it becomes relevant. We apply this model for 
selective retention of learned knowledge to the working and 
procedural memories of Soar. When evaluated in simulated, 
robotic exploration and a competitive, multi-player game, 
these policies improve model reactivity and scaling while 
maintaining reasoning competence. 

Keywords: large-scale cognitive modeling; working 
memory; procedural memory; cognitive architecture; Soar 

Introduction 
Typical cognitive models persist for short periods of time 
(seconds to a few minutes) and have modest learning 
requirements. For these models, current cognitive 
architectures, such as Soar (Laird, 2012) and ACT-R 
(Anderson et al., 2004), executing on commodity computer 
systems, are sufficient. However, prior work (Kennedy & 
Trafton, 2007) has shown that cognitive models of complex, 
protracted tasks can accumulate large amounts of 
knowledge, and that the computational performance of 
existing architectures degrades as a result. 

This issue, where more knowledge can harm problem-
solving performance, has been dubbed the utility problem, 
and has been studied in many contexts, such as explanation-
based learning (Minton, 1990; Tambe et al., 1990), case-
based reasoning (Smyth & Keane, 1995; Smyth & 
Cunningham, 1996), and language learning (Daelemans et 
al., 1999). Markovitch and Scott (1988) have characterized 
different strategies for dealing with the utility problem in 
terms of information filters applied at different stages in the 
problem-solving process. One common strategy that is 
relevant to cognitive modeling is selective retention, or 
forgetting, of learned knowledge. The benefit of this 
approach, as opposed to selective utilization, is that all 
available knowledge is brought to bear on problem solving, 
a property that is crucial for model competence in complex 
tasks. However, it can be challenging to devise forgetting 
policies that work well across a variety of problem domains, 
effectively balancing the task performance of cognitive 
models with reductions in retrieval time and storage 
requirements of learned knowledge. 

In context of this challenge, we present two tasks where 
effective behavior requires that the model accumulate large 

amounts of information from the environment, and where 
over time this learned knowledge overwhelms reasonable 
computational limits. In response, we present and evaluate 
novel policies for selective retention of learned knowledge 
in the working and procedural memories of Soar. These 
policies investigate a common hypothesis: it is rational for 
the architecture to forget a unit of knowledge when there is 
a high degree of certainty that it is not of use, as calculated 
by base-level activation (Anderson et al., 2004), and that it 
can be reconstructed in the future if it becomes relevant. We 
demonstrate that these task-independent policies improve 
model reactivity and scaling, while maintaining problem-
solving competence. 

Related Work 
Previous cognitive-modeling research has investigated 
forgetting in order to account for human behavior and 
experimental data. As a prominent example, memory decay 
has long been a core commitment of the ACT-R theory 
(Anderson et al., 2004), as it has been shown to account for 
a class of memory retrieval errors (Anderson et al., 1996). 
Similarly, research in Soar investigated task-performance 
effects of forgetting short-term (Chong, 2003) and 
procedural (Chong, 2004) knowledge. By contrast, the 
motivation for and outcome of this work is to investigate the 
degree to which selective retention can support long-term, 
real-time modeling in complex tasks. 

Prior work shows the potential for cognitive benefits of 
memory decay, such as in task-switching (Altmann & Gray, 
2002) and heuristic inference (Schooler & Hertwig, 2005). 
In this paper, we focus on improved reactivity and scaling. 

We extend prior investigations of long-term symbolic 
learning in Soar (Kennedy & Trafton, 2007), where the 
source of learning was primarily from internal problem 
solving. In this paper, the evaluation domains accumulate 
information from interaction with an external environment. 

The Soar Cognitive Architecture 
Soar is a cognitive architecture that has been used for 
developing intelligent agents and modeling human 
cognition. Historically, one of Soar’s main strengths has 
been its ability to efficiently represent and bring to bear 
large amounts of symbolic knowledge to solve diverse 
problems using a variety of methods (Laird, 2012). 

Figure 1 shows the structure of Soar. At the center is a 
symbolic working memory that represents the agent’s 
current state. It is here that perception, goals, retrievals from 
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long-term memory, external action directives, and structures 
from intermediate reasoning are jointly represented as a 
connected, directed graph. The primitive representational 
unit of knowledge in working memory is a symbolic triple 
(identifier, attribute, value), termed a working-memory 
element, or WME. The first symbol of a WME (identifier) 
must be an existing node in the graph, whereas the second 
(attribute) and third (value) symbols may be either terminal 
constants or non-terminal graph nodes. Multiple WMEs that 
share the same identifier are termed an “object,” and the set 
of individual WMEs sharing that identifier are termed 
“augmentations” of that object. 

Procedural memory stores the agent’s knowledge of when 
and how to perform actions, both internal, such as querying 
long-term declarative memories, and external, such as 
controlling robotic actuators. Knowledge in this memory is 
represented as if-then rules. The conditions of rules test 
patterns in working memory and the actions of rules add 
and/or remove working-memory elements. Soar makes use 
of the Rete algorithm for efficient rule matching (Forgy, 
1982) and retrieval time scales to large stores of procedural 
knowledge (Doorenbos, 1995). However, the Rete algorithm 
is known to scale linearly with the number of elements in 
working memory, a computational issue that motivates 
maintaining a relatively small working memory. 

Soar learns procedural knowledge via chunking (Laird et 
al., 1986) and reinforcement learning (RL; Nason & Laird, 
2005) mechanisms. Chunking creates new productions: it 
converts deliberate subgoal processing into reactive rules by 
compiling over production-firing traces, a form of 
explanation-based learning (EBL). If subgoal processing 
does not interact with the environment, the chunked rule is 
redundant with existing knowledge and serves to improve 
performance by reducing deliberate processing. However, 
memory usage in Soar scales linearly with the number of 
rules, typically at a rate of 1-5 KB/rule, which motivates 
forgetting of under-utilized productions. 

Reinforcement learning incrementally tunes existing 
production actions: it updates the expectation of action 
utility, with respect to a subset of state (represented in rule 
conditions) and an environmental or intrinsic reward signal. 
A production that can be updated by the RL mechanism 
(termed in RL rule) must satisfy a few simple criteria related 
to its actions, and is thus distinguishable from other rules. 

This distinction is relevant to forgetting productions. When 
an RL rule that was learned via chunking is updated, that 
rule is no longer redundant with the knowledge that led to 
its creation, as it now incorporates information from 
environmental interaction that was not captured in the 
original subgoal processing. 

Soar incorporates two long-term declarative memories, 
semantic and episodic (Derbinsky & Laird, 2010). Semantic 
memory stores working-memory objects, independent of 
overall working-memory connectivity (Derbinsky, Laird, & 
Smith, 2010), and episodic memory incrementally encodes 
and temporally indexes snapshots of working memory, 
resulting in an autobiographical history of agent experience 
(Derbinsky & Laird, 2009). Agents retrieve knowledge from 
one of these memory systems by constructing a symbolic 
cue in working memory; the intended memory system then 
interprets the cue, searches its store for the best matching 
memory, and if it finds a match, reconstructs the associated 
knowledge in working memory. For episodic memory, the 
time to reconstruct knowledge depends on the size of 
working memory at the time of encoding, another 
motivation for a concise agent state. 

Agent reasoning in Soar consists of a sequence of 
decisions, where the aim of each decision is to select and 
apply an operator in service of the agent’s goal(s). The 
primitive decision cycle consists of the following phases:  
encode perceptual input; fire rules to elaborate agent state, 
as well as propose and evaluate operators; select an 
operator; fire rules that apply the operator; and then process 
output directives and retrievals from long-term memory. 
Unlike ACT-R, multiple rules may fire in parallel during a 
single phase. The time to execute the decision cycle, which 
primarily depends on the speed with which the architecture 
can match rules and retrieve knowledge from episodic and 
semantic memories, determines agent reactivity. We have 
found that 50 msec. is an acceptable upper bound on this 
response time across numerous domains, including robotics, 
video games, and human-computer interaction (HCI) tasks. 

There are two types of persistence for working-memory 
elements added as the result of rule firing. Rules that fire to 
apply a selected operator create operator-supported 
structures. These WMEs will persist in working memory 
until deliberately removed. In contrast, rules that do not test 
a selected operator create instantiation-supported structures, 
which persist only as long as the rules that created them 
match. This distinction is relevant to forgetting WMEs. 

As evident in Figure 1, Soar has additional memories and 
processing modules; however, they are not pertinent to this 
paper and are not discussed further. 

Selective Retention in Working Memory 
The core intuition of our working-memory retention policy 
is to remove the augmentations of objects that are not 
actively in use and that the model can later reconstruct from 
long-term semantic memory, if they become relevant. We 
characterize WME usage via the base-level activation model 
(BLA; Anderson et al., 2004), which estimates future 

Figure 1: The Soar cognitive architecture. 
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usefulness of memory based upon prior usage. The primary 
activation event for a working-memory element is the firing 
of a rule that tests or creates that WME. Also, when a rule 
first adds an element to working memory, the activation of 
the new WME is initialized to reflect the aggregate 
activation of the set of WMEs responsible for its creation. 
The base-level activation of a WME is computed as: 

𝐴 = ln  ( 𝑡!!!
!

!!!

) 

where n is the number of memory activations, tj is the time 
since the jth activation, and d is a free decay parameter. For 
computational efficiency, history size is bounded: each 
working-memory element maintains a history of at most the 
c most recent activations and the activation calculation is 
supplemented by an approximation of the more distant past 
(Petrov, 2006). This model of activation sources, events, 
and decay is task independent. 

At the end of each decision cycle, Soar removes from 
working memory each element that satisfies all of the 
following requirements, with respect to τ, a static, 
architectural threshold parameter: 
R1. The WME was not encoded directly from perception. 
R2. The WME is operator-supported. 
R3. The activation level of the WME is less than τ. 
R4. The WME augments an object, o, in semantic memory. 
R5. The activation of all augmentations of o are less than τ. 

We adopted requirements R1-R3 from Nuxoll, Laird, and 
James (2004), whereas R4 and R5 are novel. Requirement 
R1 distinguishes between the decay of representations of 
perception, and any dynamics that may occur with actual 
sensors, such as refresh rate, fatigue, noise, or damage. 
Requirement R2 is a conceptual optimization: as operator-
supported WMEs are persistent, while instantiation-
supported structures are direct entailments, if we properly 
manage the former, the latter are handled automatically. 
This means that if we properly remove operator-supported 
WMEs, any instantiation-supported structures that depend 
on them will also be removed, and thus our mechanism only 
manages operator-supported structures. The concept of a 
fixed lower bound on activation, as defined by R3, was 
adopted from activation limits in ACT-R (Anderson et al., 
1996), and dictates that working-memory elements will 
decay in a task-independent fashion as their use for 
reasoning becomes less recent/frequent. 

Requirement R4 dictates that our mechanism only 
removes elements from working memory that can be 
reconstructed from semantic memory. From the perspective 
of cognitive modeling, this constraint on decay resembles a 
working memory that is in part an activated subset of long-
term memory (Jonides et al., 2008). Functionally, 
requirement R4 serves to balance the degree of working-
memory decay with support for sound reasoning. 
Knowledge in Soar’s semantic memory is persistent, though 
may change over time. Depending on the task and the 
model’s knowledge-management strategies, it is possible 
that any removed knowledge may be recovered via 

deliberate reconstruction from semantic memory. 
Additionally, knowledge that is not in semantic memory can 
persist indefinitely to support model reasoning. 

Requirement R5 supplements R4 by providing partial 
support for the closed-world assumption. R5 dictates that 
either all object augmentations are removed, or none. This 
policy leads to an object-oriented representation whereby 
procedural knowledge can distinguish between objects that 
have been cleared, and thus have no augmentations, and 
those that simply are not augmented with a particular feature 
or relation. R5 makes an explicit tradeoff, weighting more 
heavily model competence at the expense of the speed of 
working-memory decay. This requirement resembles the 
declarative module of ACT-R, where activation is 
associated with each chunk and not individual slot values. 

Empirical Evaluation 
We extended an existing system where Soar controls a 
simulated mobile robot (Laird, Derbinsky, & Voigt, 2011). 
Our evaluation uses a simulation instead of a real robot 
because of the practical difficulties in running numerous, 
long experiments in large physical spaces. However, the 
simulation is quite accurate and the Soar rules (and 
architecture) used in the simulation are exactly the same as 
the rules used to control the real robot. 

The robot’s task is to visit every room on the third floor of 
the Computer Science and Engineering building at the 
University of Michigan. For this task, the robot visits over 
100 rooms and takes about 1 hour of real time. During 
exploration, it incrementally builds an internal topographic 
map, which, when completed, requires over 10,000 WMEs 
to represent and store. In addition to storing information, the 
model reasons about and plans using the map in order to 
find efficient paths for moving to distant rooms it has sensed 
but not visited. The model uses episodic memory to recall 
objects and other task-relevant features during exploration. 

In our experiments, we aggregate working-memory size 
and maximum decision time for each 10 seconds of elapsed 
time, all of which is performed on an Intel i7 2.8GHz CPU, 
running Soar v9.3.1. Because each experimental run takes 1 
hour, we did not duplicate our experiments sufficiently to 
establish statistical significance and the results we present 
are from individual experimental runs. However, we found 
qualitative consistency across our runs, such that the 
variance between runs is small as compared to the trends we 
focus on below. 

We make use of the same model for all experiments, but 
modify small amounts of procedural knowledge and change 
architectural parameters, as described here. The baseline 
model (A0) maintains all declarative map information both 
in Soar’s working and semantic memories. A slight 
modification to this baseline (A1) includes hand-coded rules 
to prune away rooms in working memory that are not 
required for immediate reasoning or planning. The 
experimental model (A2) makes use of our working-
memory retention policy and we explored different values 
of the base-level decay rate (c=10 and τ=-2 for all models). 
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Figure 2 compares working-memory size between 
conditions A0, A1, and A2 over the duration of the 
experiment. We note first the major difference in working-
memory size between A0 and A1 after one hour, when the 
working memory of A1 contains more than 11,000 fewer 
elements, more than 90% less than A0. We also find that the 
greater the decay-rate parameter for A2, the smaller the 
working-memory size, where a value of 0.5 qualitatively 
tracks A1. This finding suggests that our policy, with an 
appropriate decay, keeps working-memory size comparable 
to that maintained by hand-coded rules. 

Figure 3 compares maximum decision-cycle time in 
msec., between conditions A0, A1, and A2 as the simulation 
progresses. The dominant cost reflected by this data is time 
to reconstruct prior episodes that are retrieved from episodic 
memory. We see a growing difference in time between A0 
and A2 as working memory is more aggressively managed 
(i.e. greater decay rate), demonstrating that episodic 
reconstruction, which scales with the size of working 
memory at the time of episodic encoding, benefits from 
selective retention. We also find that with a decay rate of 
0.5, our mechanism performs comparably to A1. We note 
that without sufficient working-memory management (A0; 
A2 with decay rate 0.3), episodic-memory retrievals are not 
tenable for a model that must reason with this amount of 
acquired information, as the maximum required processing 
time exceeds the reactivity threshold of 50 msec. 

Discussion 
It is possible to write rules that prune Soar’s working 
memory; however, this task-specific knowledge is difficult 
to encode and learn, and interrupts deliberate processing.  

In this work, we presented and evaluated a novel 
approach that utilizes a memory hierarchy to bound 
working-memory size while maintaining sound reasoning. 
This approach assumes that the amount of knowledge 
required for immediate reasoning is small relative to the 
overall amount of knowledge accumulated by the model. 
Under this assumption, as demonstrated in the robotic 
evaluation task, our policy scales even as learned knowledge 
grows large over long trials. We note that since Soar’s 
semantic memory can change over time and is independent 
of working memory, our selective-retention policy does 
admit a class of reasoning error wherein the contents of 
semantic memory are changed so as to be inconsistent with 
decayed WMEs. However, this corruption requires 
deliberate reasoning in a relatively small time window and 
has not arisen in our models. While the model completed 
this task for all conditions reported here, at larger decay 
rates (≥0.6) the model thrashed because map information 
was not held in working memory long enough to complete 
deep look-ahead planning. This suggests additional research 
is needed on either adaptive decay-rate settings or planning 
approaches that are robust in the face of memory decay. 

Selective Retention in Procedural Memory 
The intuition of our procedural-memory retention policy is 
to remove productions that are not actively used and that the 
model can later reconstruct via deliberate subgoal reasoning, 
if they become relevant. We utilize the base-level activation 
model to summarize the history of rule firing. 

At the end of each decision cycle, Soar removes from 
procedural memory each rule that satisfies all of the 
following requirements, with respect to parameter τ: 
R1. The rule was learned via chunking. 
R2. The rule is not actively firing. 
R3. The activation level of the rule is less than τ. 
R4. The rule has not been updated by RL. 

We adopted R1-R3 from Chong (2004), whereas R4 is 
novel. Chong was modeling human skill decay, and did not 
delete productions, so as to not lose each rule’s activation 
history. Instead, decayed rules were prevented from firing, 
similar to below-utility-threshold rules in ACT-R. R1 is a 
practical consideration to distinguish learned knowledge 
from “innate” rules developed by the modeler, which, if 
modified, would likely break the model. R2 recognizes that 
matched rules are in active use and thus should not be 
forgotten. R3 dictates that rules will decay in a task-
independent fashion as their use for reasoning becomes less 
recent/frequent. We note that for fixed parameters (d and τ) 
and a single activation, the BLA model is equivalent to the 
use-gap heuristic of Kennedy and Trafton (2007). However, 
the time between sequential rule firings ignores firing 
frequency, which the BLA model incorporates. 

Figure 2: Model working-memory size comparison. 

Figure 3: Model maximum decision time comparison. 
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Requirement R4 attempts to retain only those rules that 
the model cannot regenerate via chunking, a process that 
compiles existing knowledge applied in subgoal reasoning. 
Chunked rules that have been updated by RL encode 
expected utility information, which is not captured by other 
learning mechanisms. Because this information is difficult, 
if not impossible, to reconstruct, these rules are retained. 

Empirical Evaluation 
We extended an existing system (Laird et al., 2011) where 
Soar plays Liar’s Dice, a multi-player game of chance. The 
rules of the game are numerous and complex, yielding a task 
that has rampant uncertainty and a large state space 
(millions-to-billions of relevant states for games of 2-4 
players). Prior work has shown that RL allows Soar models 
to significantly improve performance after playing a few 
thousand games. However, this involves learning large 
numbers of RL rules to represent the state space. 

The model we use for all experiments learns two classes 
of rules: RL rules, which capture expected action utility, and 
symbolic game heuristics. Our experimental baseline (B0) 
does not include selective retention. The first experimental 
modification (B1) implements our selective-retention 
policy, but does not enforce requirement R4 and is thereby 
comparable to prior work (Kennedy & Trafton, 2007; 
Chong, 2004). The second modification (B2) fully 
implements our policy. We experiment with a range of 
representative decay rates, including 0.999, where rules not 
immediately updated by RL are deleted (c=10, τ=-2 for all). 

We alternated 1,000 2-player games of training then 
testing, each against a non-learning version of the model. 
After each testing session, we recorded maximum memory 
usage (Mac OS v10.7.3; dominated, in this task, by 
procedural memory), task performance (% games won), and 
average decisions/task action. We do not report maximum 
decision time, as this was below 6 msec. for all conditions 
(Intel i7 2.8GHz CPU, Soar v9.3.1). We collected data for 
all conditions in at least three independent trials of 40,000 
games. For conditions that used selective retention, we were 
able to gather more data in parallel, due to reduced memory 
consumption (six trials for d=0.35, seven for remaining). 

Figure 4 presents average memory growth, in megabytes, 
as the model trains, where the error bars represent ±1 
standard deviation. For all models, the memory growth of 
games 1-10K follows a power law (r2≥0.96), whereas for 

11-40K, growth is linear (r2≥0.99). These plots indicate that 
memory usage for the baseline (B0) and the slowly decaying 
model (B2, d=0.3) is much greater, and faster growing, than 
models that more aggressively decay. It also shows that 
there is a diminishing benefit from faster decay (e.g. d=0.5 
and 0.999 for B2 are indistinguishable). 

Figure 5 presents average task performance after 1,000 
games of training, where the error bars represent ±1 
standard deviation. This data shows that given the inherent 
stochasticity of the task, there is little, if any, difference 
between the performance of the baseline (B0) and decay 
levels of B2. However, by comparing B0 and B2 to B1, it is 
clear that without R4, the model suffers a dramatic loss of 
task competence. For clarity, the model begins by playing a 
non-learning copy of itself and learns from experience with 
each training session. While the B0 and B2 models improve 
from winning 50% of games to 75-80%, the B1 model 
improves to below 55%. We conclude that a selective-
retention policy that only incorporates production-firing 
history (e.g. Chong, 2004; Kennedy & Trafton, 2007) will 
negatively impact performance in tasks that involve 
informative interaction with an external environment. Our 
policy incorporates both rule-firing history and rule 
reconstruction, and thus retains this source of feedback. 

Finally, Figure 6 presents average number of decisions for 
the model to take an action in the game after training for 
10,000 games. In prior work (e.g. Kennedy & Trafton, 
2007), this value was a major performance metric, as it 
reflected the primary reason for learning new rules. In this 
work, each decision takes very little time, and so the number 
of decisions to choose an action is not as crucial to task 
performance as the selected action. However, these data 
show that there exists a space of decay values (e.g. d=0.35) 
in which memory usage is relatively low and grows slowly 
(Figure 4), task performance is relatively high (Figure 5), 
and the model makes decisions relatively quickly (Figure 6). 

Figure 4. Avg. memory usage ±1 std. dev. vs. games played. 

Figure 5. Avg. task performance ±1 std. dev. 

Figure 6. Avg. decisions/task action ±1 std. dev. 
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Discussion 
This work contributes evidence that we can develop models 
that improve using RL in tasks with large state spaces. 
Currently, it is typical to explicitly represent the entire state 
space, which is not feasible in complex problems. Instead, 
Soar learns rules to represent only those portions of the 
space it experiences, and our policy retains only those rules 
that include feedback from environmental reward. Future 
work needs to validate this approach in other domains. 

Concluding Remarks 
This paper presents and evaluates two policies for effective 
retention of learned knowledge from complex environments. 
While forgetting mechanisms are common in cognitive 
modeling, this work pursues this line of research for 
functional reasons: improving computational-resource usage 
while maintaining reasoning competence. We have 
presented compelling results from applying these policies in 
two complex, temporally extended tasks, but there is 
additional work to evaluate these policies, and their 
parameters, across a wider variety of problem domains. 

This paper does not address the computational challenges 
associated with efficiently implementing these policies. 
Derbinsky and Laird (2012) present and evaluate algorithms 
for implementing forgetting via base-level activation. 
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