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What is Episodic Memory? 

•  Long-term, contextualized 
store of specific events 

–  Tulving, E.: Elements of Episodic Memory (1983) 

•  Functionally 
–  Architectural 
–  Automatic 
–  Autonoetic 
–  Temporally indexed 
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Architectural Integration 
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Comparison to CBR 
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•  Contain problems and 
solutions 

•  Fields pre-specified 

•  Structure and content 
reflect agent’s experiences 
•  Potentially fine-grain 

•  Fixed or slowly growing 
•  Deliberate updates 
•  No temporal relation 

between cases 

•  Grows with experience 
•  Architectural & automatic 

storage 
•  Temporally structured 
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The Promise of EpMem 

•  Virtual Sensing 
•  Action Modeling 
•  Retroactive Learning 
… 

Nuxoll, A.: Enhancing Intelligent Agents 
with Episodic Memory. (2007) 
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Efficient Implementation 

Goals 
•  Develop a system that is 

practical for real-world 
tasks 

•  Establish baseline results 
for graph-based, task-
independent EpMem 
implementations 

Assumptions 
•  Stored episodes do not 

change over time 

•  Qualitative Nearest 
Neighbor (NN) cue 
matching 
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Performance Challenges 

•  Consider a year of episodic memories… 
–  16 hours/day -> 42M to 420M episodes 
–  100 – 1000 features/episode (10-100 bytes/feature)  

•  42GB to 42TB 
•  2GHz CPU -> 20 seconds/scan 

•  Agents in real-world, dynamic environments have real-time 
constraints on reactivity 
–  50-100ms per deliberate decision 
–  20 decisions for utility 
–  1 second per episodic retrieval 

Laird, J.E., Derbinsky, N.: A Year of Episodic Memory (2009) 
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Related CBR Work 

•  Efficient NN qualitative/quantitative algorithms 

•  Heuristic retrieval algorithms 
–  Refined indexing, storage reduction, case deletion 

•  Two-stage cue matching 

•  Temporal CBR 
–  Time-dependent case attributes 
–  Temporal case sequences 
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Soar 9 
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Integrating EpMem with Soar 9 
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Integrating EpMem with Soar 9 
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Integrating EpMem with Soar 9 
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Integrating EpMem with Soar 9 
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Episodic Storage 

•  Faithfully capture architecturally defined subset of 
working memory 

•  Incrementally update indexing structures to facilitate 
efficient cue matching 

•  Minimize 
–  Memory (monotonically increasing store) 
–  Time (relatively frequent operation) 
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Episodic Storage:  
Naïve Implementation 

Time  Working Memory  Episodic Store 

1 

2 

3 

July 23, 2009  15 

1 

1  2 

1  2  3 



Computer Science and Engineering at Michigan 

Compression via  
Global Memory Structure 

•  Observation 
–  Agents tend to re-use 

WM structures 

•  Result 
–  Maintain a global 

record of unique 
structures 

–  Define episodes as 
“bag of pointers” 
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Gains via 
Interval Representation 

•  Observation 
–  An episode will differ 

from the previous (and 
next) only in a 
relatively small number 
of features 

•  Result 
–  Define episodes 

implicitly as temporal 
changes 
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Episodic Storage Summary 

•  Maintain record of unique structures 
•  Maintain associated intervals on node addition/removal 

–  Only process changes! 

Episodic storage performs in time/space linear in the 
changes in working memory. 
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Cue Matching 

•  A cue is an acyclic graph, partially specifying a subset of 
an episode 

•  Cue matching returns the most recent episode 
containing the greatest number of cue leaf elements  
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Cue Matching:  
Naïve Implementation 

Time  N  N‐1  N‐2 

Episode 

Score 
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Minimizing Combinatorics via 
Two-Stage Matching 

1.  Evaluate candidate episodes based upon relatively 
inexpensive surface match 

2.  Perform combinatorial structural match (graph-match 
via CSP backtracking) ONLY on candidate episodes 
with a perfect surface score   

End search on perfect match or no more episodes. 
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Minimize Episode Evaluation via  
Interval Endpoint Search 

Episode match score changes only at interval endpoints! 
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Interval Search Model 

Interval search is dependent upon the number of 
candidate episodes evaluated and WM changes. 
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T     = Total episodes 

Distance  = Temporal distance 
        to best match 

Δ    = Cue intervals  
       ( ~ WM changes ) 
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Efficient Surface Evaluation via 
Incremental DNF Satisfaction 

•  sat(y=5) := (root AND map[1] AND square[1] AND y=5[1]) OR 
                       (root AND map[1] AND square[2] AND y=5[2]) OR 
                       (root AND map[1] AND square[3] AND y=5[3]) 

•  Surface matching can be expressed as evaluating the satisfaction of a 
set of disjunctive normal form (DNF) Boolean equations 

–  Each interval endpoint inverts the value of a single variable 
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DNF Model 

DNF performance is dependent upon the changes 
in working memory. 
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U   = Unique nodes 

R  = Stored intervals 
    ( ~ changes ) 

L  = Cue node literals 
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Cue Matching Summary 

•  Minimize candidates by only considering episodes with 
at least one cue node 

•  Minimize combinatorics via two-stage matching policy 
–  Exponential growth in the worst case 

•  Minimize episode evaluation via interval endpoint search 
–  Linear growth in the worst case 

•  Minimize surface evaluation cost by only processing cue 
node changes 
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Episode Reconstruction 

•  The process of faithfully reproducing all episode content 
and structure within the agent’s working memory 
–  Collect contributing episode elements 
–  Add elements to working memory 
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Logarithmic Interval Query via 
Relational Interval Tree 

•  Collecting episode elements in an Interval representation 
is tantamount to an interval intersection query: 
–  Collect all elements that started before and ended after time t 

•  By implementing an interval tree, intersection queries are 
answered in time logarithmic with respect to the changes 
in working memory 
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Empirical Domain: TankSoar 

•  Discrete 15x15 grid 
–  Turn-based 

•  Turning, moving, firing 
missiles, raising 
shields, radar 

•  Smell, hearing, path 
blockage, radar, 
incoming missiles 
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Empirical Evaluation 

•  Mapping-Bot 
–  2500 features 
–  70-90% of perceptual 

inputs change each 
episode 

•  2.8GHz, 4GB RAM 
•  SQLite3 
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Empirical Results 

Storage  Cue Matching*  ReconstrucCon**  Total 

2.68ms 
625‐1620MB 

(0.64‐1.66KB/ep) 

57.6ms  22.65ms  82.93ms 
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1 million episodes (~1 episode/decision), 10 trials 

*  15 cues 
** 50 random times 
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Future Work 

•  Better Evaluation 
–  Characterize architecture performance with respect to properties of 

the environment, agent, cues, and task 
–  Longer and multi-task runs 

•  Bound Cue Matching 
–  Fast familiarity 
–  Heuristic graph-match 

•  Algorithmic Variants 
–  Selection bias: activation, arousal via appraisals 
–  Stored episode dynamics 
–  Characterize efficiency vs. proficiency 
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Summary 

•  Implemented graph-based, task-independent episodic 
memory 
–  Released as Soar 9.1.1 beta 
–  Gorski, N.A., Laird, J.E.: Learning to Use Episodic Memory 

(2009) 

•  Characterized computational challenges 
–  Formal models of costs related to episodic operations 
–  Initial empirical study for 1 million episodes 
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