Testing fine-grained parallelism for the ADMM on a factor-graph AmirReza Oghbaee Mohammad Rostami Nate Derbinsky Ning Hao José Bento

1. Problem

There is a shortage of not-problem-specific general-purpose optimization tools that can automatically exploit GPU parallelism.

2. Focus

The Alternating Direction Method of Multipliers (ADMM).

- deals with non-smooth functions;
- better bounds for global convergence rates and variants of the ADMM than for other first order methods such as Nesterov's and gradient descent [Lessard et al. 14; França and Bento 15];
- convergence guarantees for convex problems;
- breaks problems into a series of parallel computations.

3. Questions

Can we use the ADMM to automatically exploit parallelism in general optimization without having to write problem specific parallel code?

Do we get good speedup on a GPU?

Is there an advantage on using a GPU vs other parallel frameworks?

Our numerical experiments with three different domains say

4. "Typical" ADMM

while !stopping criteria do $u \leftarrow u + Ax + Bz - c$

become visible.

Number of cores