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Abstract—There is an ongoing effort to develop tools that
apply distributed computational resources to tackle large
problems or reduce the time to solve them. In this context, the
Alternating Direction Method of Multipliers (ADMM) arises
as a method that can exploit distributed resources like the
dual ascent method and has the robustness and improved
convergence of the augmented Lagrangian method. Traditional
approaches to accelerate the ADMM using multiple cores are
problem-specific and often require multi-core programming. By
contrast, we propose a problem-independent scheme of accel-
erating the ADMM that does not require the user to write any
parallel code. We show that this scheme, an interpretation of
the ADMM as a message-passing algorithm on a factor-graph,
can automatically exploit fine-grained parallelism both in
GPUs and shared-memory multi-core computers and achieves
significant speedup in such diverse application domains as com-
binatorial optimization, machine learning, and optimal control.
Specifically, we obtain 10-18x speedup using a GPU, and 5-9x
using multiple CPU cores, over a serial, optimized C-version of
the ADMM, which is similar to the typical speedup reported
for existing GPU-accelerated libraries, including cuFFT (19x),
cuBLAS (17x), and cuRAND (8x).
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I. INTRODUCTION

The Alternating Direction Method of Multipliers (ADMM)
is a popular iterative algorithm to solve non-smooth opti-
mization problems in a distributed way. The algorithm is
often presented as solving problems of the form

minimize f(w1) + g(w2)

subject to Aw1 + Bw2 = c (1)

using the following iterations on auxiliary variables x, z, u:

Algorithm 1 ADMM
1: while !stopping criteria do
2: x arg min

s

f(s) +

⇢

2kAs + Bz � c + uk2
3: z  arg min

r

g(r) +

⇢

2kAx + Br � c + uk2
4: u u + Ax + Bz � c

5: end while

After convergence, the optimal solution (w

⇤
1 , w

⇤
2) can be read

from (x, z). Convergence is guaranteed under convexity and
some mild technical assumptions [1] although it has been
used with surprising success for non-convex applications

ranging from computer graphics to power systems [2]–
[4]. The free parameter ⇢ > 0 can be used to control
convergence.

One opportunity to exploit distributed computational re-
sources with the ADMM arises when the functions f and/or
g and the matrices A and/or B make the subproblems in
lines 2–3 of Algorithm 1 decomposable into smaller inde-
pendent problems. As a simple example, consider f(w1) =

f1(w11)+f2(w12)+f3(w13) and let A be the identity matrix.
Line 2 then decomposes into three independent updates for
w11, w12, and w13 involving the functions f1, f2, and f3,
respectively. The authors in [5] use this idea to decompose
a Lasso problem involving 30GB of data and 8000 features
into 80 sub-problems, each solved by a separate computer.

Another opportunity to exploit distributed resources arises
when lines 2–4 involve operations that can be accelerated
using a GPU and/or multiple CPU-cores. A good example
of this is [6], where a GPU and the JACKET toolbox for
MATLAB are applied to accelerate matrix multiplications
in an ADMM-based solution to the sparse coding problem.
Unlike the previous scenario, this approach is not specific to
the ADMM (e.g. GPUs are commonly used to speed linear-
algebra computations when fitting neural nets to data using
stochastic gradient descent).

In both scenarios, exploiting parallelism only becomes ev-
ident after a problem is specified, which explains why most
GPU-accelerated implementations of the ADMM have been
problem specific. Here we numerically study a problem-
independent approach and we observe, across multiple tasks,
that this generality does not preclude useful acceleration.

This result is most surprising in the context of typical GP-
GPU acceleration (e.g. linear algebra), in which GPU cores
are assigned relatively simple and similar tasks. By contrast,
our parallelization scheme schedules relatively complex and
dissimilar tasks, and yet still performs quite well.

We also study the performance of our framework using
multiple CPU cores, thus providing new data to answer the
question raised by [7] of whether GPUs are really game-
changing or whether we are better off simply exploiting the
multi-core parallelism of modern CPUs.

Due to these positive findings, we have developed
parADMM, an open-source, general-purpose optimization
tool based on the ADMM that allows users to automat-
ically exploit GPU and multi-CPU parallelism. To the
best of our knowledge, there is no other GPU-accelerated,
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respectively. The authors in [5] use this idea to decompose
a Lasso problem involving 30GB of data and 8000 features
into 80 sub-problems, each solved by a separate computer.

Another opportunity to exploit distributed resources arises
when lines 2–4 involve operations that can be accelerated
using a GPU and/or multiple CPU-cores. A good example
of this is [6], where a GPU and the JACKET toolbox for
MATLAB are applied to accelerate matrix multiplications
in an ADMM-based solution to the sparse coding problem.
Unlike the previous scenario, this approach is not specific to
the ADMM (e.g. GPUs are commonly used to speed linear-
algebra computations when fitting neural nets to data using
stochastic gradient descent).

In both scenarios, exploiting parallelism only becomes ev-
ident after a problem is specified, which explains why most
GPU-accelerated implementations of the ADMM have been
problem specific. Here we numerically study a problem-
independent approach and we observe, across multiple tasks,
that this generality does not preclude useful acceleration.

This result is most surprising in the context of typical GP-
GPU acceleration (e.g. linear algebra), in which GPU cores
are assigned relatively simple and similar tasks. By contrast,
our parallelization scheme schedules relatively complex and
dissimilar tasks, and yet still performs quite well.

We also study the performance of our framework using
multiple CPU cores, thus providing new data to answer the
question raised by [7] of whether GPUs are really game-
changing or whether we are better off simply exploiting the
multi-core parallelism of modern CPUs.

Due to these positive findings, we have developed
parADMM, an open-source, general-purpose optimization
tool based on the ADMM that allows users to automat-
ically exploit GPU and multi-CPU parallelism. To the
best of our knowledge, there is no other GPU-accelerated,

general-purpose ADMM solver as versatile and automatic
to use. The only comparable tool is SNAPVX [8], which
(a) is written in Python and hence much slower; (b) forces
users to use CVXPY [9], adding additional delay; (c) is
restricted to convex problems; (d) can only solve problems
that decompose into a very particular form; and (e) can
only exploit multiple CPU-cores and not GPU parallelism.
parADMM does not share these limitations.

II. THE ADMM ON A FACTOR-GRAPH

Our starting point is a formulation of the ADMM for a
factor-graph representation of the objective function that
makes explicit many small operations that can be performed
in parallel; hence fine-grained parallelism.

First we write the objective function as

f(w) =

X

a2F

f

a

(w

@a

), (2)

where w = (w1, . . . , wp

) 2 Rp⇥d are variables, @a ✓ V ⌘
[p] ⌘ {1, . . . , p} is a subset of indices, and w

@a

= {w

i

:

i 2 @a} is a subset of variables. Functions {f

a

}
a2F

take
values in R [ {±1} and do not need to be smooth. Thus
(2) includes constrained optimization, and (1) and (2) are
equally general.

This objective function can be written as a factor-graph
G = (F, V, E) where edge (a, b) 2 E represents a depen-
dency of function f

a

2 F on the component w

b

2 V . Figure
1-left shows this factor-graph representation of f(w) =

f1(w1, w2, w3) + f2(w1, w4, w5) + f3(w2, w5) + f4(w5).
The message-passing ADMM is a scheme that updates

five auxiliary variables x, m, z, u, n on the graph G. We can
interpret these updates as a message-passing scheme [10].
For each a 2 F we define the neighbors of a as @a = {b 2
V : (a, b) 2 E}; these are the components of w that function
f

a

depends on. For each b 2 V we define the neighbors of
b as @b = {a 2 F : (a, b) 2 E}; these are the functions
that depend on component w

b

. We denote the number of
elements in @a and @b as |@a| and |@b|, respectively.
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Figure 1. Left - Factor-graph representation of an objective function;
Right - Message-passing ADMM auxiliary variables.

Algorithm 2 ADMM on a factor-graph
1: while !stopping criteria do
2: for a 2 F do . x-update
3: x(a,@a) Prox

fa,⇢(a,b)
(n(a,b))

4: end for
5: for (a, b) 2 E do . m-update
6: m(a,b)  x(a,b) + u(a,b)

7: end for
8: for b 2 V do . z-update
9: z

b

 
P

a2@b

⇢(a,b)m(a,b)

. P
a2@b

⇢(a,b)

10: end for
11: for (a, b) 2 E do . u-update
12: u(a,b)  u(a,b) + ↵(a,b)(x(a,b) � z

b

)

13: end for
14: for (a, b) 2 E do . n-update
15: n(a,b)  z

b

� u(a,b)

16: end for
17: end while

The relationship between the ADMM auxiliary variables
x, m, u, n, z and the factor-graph is exemplified in Figure
1-right and is as follows. Each edge (a, b) 2 E is associated
with four variables x(a,b), m(a,b), u(a,b), and n(a,b). Each
variable node b 2 V is associated with one variable z

b

and
each function node a 2 F is associated with one function f

a

.
Each edge (a, b) 2 E is also associated with two parameters
⇢(a,b), ↵(a,b) > 0, which in classical implementations are
considered constant but for which there are also improved
update schemes (e.g. [10] which parADMM can also imple-
ment). The free parameters ⇢ and ↵ allow us to control the
convergence rate of the algorithm.

The ADMM updates these variables sequentially and in
a cyclic way as described in Algorithm 2. To shorten the
notation, given a function h and a constant ⇢ > 0, we denote
by Prox

h,⇢

(r) the map from r to s defined by

arg min

s

h(s) +

⇢

2

ks� rk2. (3)

This is termed the proximal operator (PO) of h. After a fixed
number of iterations, or a desired accuracy is achieved, the
solution w

⇤ is read from the variables z.
The advantage of Algorithm 2 over Algorithm 1 is that

Algorithm 2 utilizes five for-loops that can be parallelized
independent of the target problem. We exploit this property
by assigning calculation of each PO to a different GPU/CPU
core, allowing users to exploit parallelism while only writing
serial code to compute each PO.

III. PARADMM

We use parADMM to study our parallelization scheme on
GPUs and CPUs, and so it is useful to detail how it works.
We also invite the reader to use parADMM to solve other

min
w

f1(w1, w2, w3) + f2(w1, w4, w5)

+ f3(w2, w5) + f4(w5)
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Figure 6. Optimization problem: cover a triangle with disks.

We now study three problems from three different and im-
portant fields: combinatorial optimization, optimal control,
and machine learning.

A. Combinatorial optimization

Packing problems are essential to fields like condensed
matter physics and coding theory. The classical packing
problem inquires as to the maximum number of 2D disks
of radius R that can be positioned entirely within a 2D
unit square, but there are many variants of this problem
and packing is very much an active area of research. For
example, a complete formal proof of Kepler’s conjecture,
that heavily relies on computers, was only published recently
[24]. Many conjectures remain open and several problems
can benefit if we can use a computer to produce or validate
different large packing configurations fast.

Here we show how to formulate an NP-hard packing
problem as an optimization problem – we then heuristically
solve it using the ADMM and show how much our tool
accelerates the ADMM. This is a good idea since the authors
[10], [25] show that using the ADMM to solve packing
problems produces record-breaking packing densities. Our
specific packing problem is the following: given N non-
overlaying disks with center c

i

and radius r

i

inside a triangle
T , what is the largest area they can cover? This problem is
related to the open problem of extending Malfati’s circle
conjecture to an arbitrary number of disks [26].

Figure 6 shows the formulation we use and the factor-
graph decomposition used for the ADMM exemplified for
N = 3. To impose that each disk must lie within the triangle
T we impose that each disk is inside three half-planes, s =

1, 2, 3, specified by their normal direction, Q

s

, and a point
in the plane, V

s

.
According to this formulation, the ADMM factor-graph

for N circles and a box formed by the intersection of S

half-planes has 2N

2 � N + 2NS edges, 2N variable nodes
and 0.5N(N �1)+N +NS function nodes. The number of
elements in the factor-graph grows quadratically with N and
all proximal operators have closed-form solutions, a setting
in which parADMM is well suited to accelerate the ADMM.

Figure 7 shows that we can get more than 16⇥ speedup
using a GPU vs. single CPU-core for large N large. It also
shows that the time per iteration grows linearly with the

number of elements in the factor-graph, which we know
grows quadratically in N . The slowest updates are the x

and z updates that (for N = 5000) take 31% + 40% =

71% of the time respectively. These are also the hardest
steps to speedup as Figure 7-right shows. For most of the
points in the plots above we find that using 32 threads
per block gives the best performance. For example, the
speedup in the x-update for N = 5000 circles takes
the values 5.6, 5.6, 5.8, 5.8, 5.8, 7.4, 5.5, 3.5, 2.0, 2.0, 3.6 for
ntb = 1, 2, 4, 8, 16, ..., 512 respectively.

We note that the time to copy the result from the GPU
back to the CPU, for example for the purpose of checking
stopping criteria, is negligible. For N = 5000 is takes only
0.3ms to copy z from the GPU to the CPU. The time it
takes to create the factor graph and copy it to the GPU can
take some time, up to 450sec for N = 5000. However, this
time is still negligible compared to the time to run enough
iterations for convergence (>hundreds of thousands for 5000

circles). Also, once formed and copied to the GPU the graph
can be reused for different instances of similar problems.

Figure 8-left shows that we can get up to 9⇥ speedup
using 32 CPU-cores, substantially less than the 16⇥ with a
GPU. In addition, the 9⇥ speedup holds only for special
values of N (around 2500) and drops to ⇥6 for larger
problems. In our experiments, the combined x and z updates
now only take 18% + 11% = 29% of the time per iteration
respectively (for N = 5000) and the CPU-cores, unlike
the GPU-cores, produce similar speedups regardless of them
updating x, m, z, u or n. Figure 8-right shows that for large
problems, the speedup starts saturating with more cores.

As a reference we note that, for example, on a single core
and for 500 circles, the time per iteration of our tool is more
than ⇥4 faster than the tool used by [10], [25].

B. Optimal control

In Model Predictive Control (MPC) we predict how the
trajectory of a system evolves under different inputs and with
this knowledge we optimally lead the system to a desired
state. MPC was first used to control chemical processes but
since then it has been used in many other applications (c.f.
[27] for a good survey). MPC can be useful both offline
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example, a complete formal proof of Kepler’s conjecture,
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can benefit if we can use a computer to produce or validate
different large packing configurations fast.

Here we show how to formulate an NP-hard packing
problem as an optimization problem – we then heuristically
solve it using the ADMM and show how much our tool
accelerates the ADMM. This is a good idea since the authors
[10], [25] show that using the ADMM to solve packing
problems produces record-breaking packing densities. Our
specific packing problem is the following: given N non-
overlaying disks with center c

i

and radius r

i

inside a triangle
T , what is the largest area they can cover? This problem is
related to the open problem of extending Malfati’s circle
conjecture to an arbitrary number of disks [26].

Figure 6 shows the formulation we use and the factor-
graph decomposition used for the ADMM exemplified for
N = 3. To impose that each disk must lie within the triangle
T we impose that each disk is inside three half-planes, s =

1, 2, 3, specified by their normal direction, Q

s

, and a point
in the plane, V

s

.
According to this formulation, the ADMM factor-graph

for N circles and a box formed by the intersection of S

half-planes has 2N

2 � N + 2NS edges, 2N variable nodes
and 0.5N(N �1)+N +NS function nodes. The number of
elements in the factor-graph grows quadratically with N and
all proximal operators have closed-form solutions, a setting
in which parADMM is well suited to accelerate the ADMM.

Figure 7 shows that we can get more than 16⇥ speedup
using a GPU vs. single CPU-core for large N large. It also
shows that the time per iteration grows linearly with the

number of elements in the factor-graph, which we know
grows quadratically in N . The slowest updates are the x

and z updates that (for N = 5000) take 31% + 40% =

71% of the time respectively. These are also the hardest
steps to speedup as Figure 7-right shows. For most of the
points in the plots above we find that using 32 threads
per block gives the best performance. For example, the
speedup in the x-update for N = 5000 circles takes
the values 5.6, 5.6, 5.8, 5.8, 5.8, 7.4, 5.5, 3.5, 2.0, 2.0, 3.6 for
ntb = 1, 2, 4, 8, 16, ..., 512 respectively.

We note that the time to copy the result from the GPU
back to the CPU, for example for the purpose of checking
stopping criteria, is negligible. For N = 5000 is takes only
0.3ms to copy z from the GPU to the CPU. The time it
takes to create the factor graph and copy it to the GPU can
take some time, up to 450sec for N = 5000. However, this
time is still negligible compared to the time to run enough
iterations for convergence (>hundreds of thousands for 5000

circles). Also, once formed and copied to the GPU the graph
can be reused for different instances of similar problems.

Figure 8-left shows that we can get up to 9⇥ speedup
using 32 CPU-cores, substantially less than the 16⇥ with a
GPU. In addition, the 9⇥ speedup holds only for special
values of N (around 2500) and drops to ⇥6 for larger
problems. In our experiments, the combined x and z updates
now only take 18% + 11% = 29% of the time per iteration
respectively (for N = 5000) and the CPU-cores, unlike
the GPU-cores, produce similar speedups regardless of them
updating x, m, z, u or n. Figure 8-right shows that for large
problems, the speedup starts saturating with more cores.

As a reference we note that, for example, on a single core
and for 500 circles, the time per iteration of our tool is more
than ⇥4 faster than the tool used by [10], [25].

B. Optimal control

In Model Predictive Control (MPC) we predict how the
trajectory of a system evolves under different inputs and with
this knowledge we optimally lead the system to a desired
state. MPC was first used to control chemical processes but
since then it has been used in many other applications (c.f.
[27] for a good survey). MPC can be useful both offline
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Figure 12. Optimization problem for soft-margin SVM.

this section we work with the soft margin SVM but there are
many other different variants of SVM. In this formulation,
given a data set of N vectors {x

i

}N

i=1 with labels {y

i

}N

i=1

taking values in {�1, +1} the objective is to find the slab
(w, b) that separates the +1 vectors from the �1 vectors as
well as possible. The quality of the separation is measured
by the norm of w and by N non-negative slack variables
{⇠

i

}N

i=1.
Figure 12 gives the details of our formulation and factor-

graph decomposition. Notice that we create multiple copies
of the w variable and break the term in the objective
function associated with w into N equal parts. This makes
the distribution of the number of edges-per-node in the
factor-graph more equilibrated, which in the current version
of parADMM is important to distribute the computations
as equally as possible among the different GPU-cores and
improve GPU performance (c.f. Conclusion). The number
of elements in the factor-graph grows linearly with N .

To test the automatic speedup we can achieve we draw
N random data points from two Gaussian distributions with
mean a certain distance apart. We do this several times such
that our results are averages over multiple random datasets.
Figure 13 summarizes our results for x

i

2 R2. Figure 13-left
shows that we can achieve more than 18⇥ speedup for large
problems using a GPU vs. a single CPU-core. We also see
that the time per iteration grows linearly with N and hence
linearly with the number of elements in the factor-graph as
expected. Figure 13-right shows that the individual speedups
of the different kinds of updates rank in very similar order to
those in circle packing and MPC, the x and z updates being
the hardest to speedup. In our GPU experiments, the x and z

updates again take a large fraction of the time per iteration,

namely 28% + 23% = 51%. For {x

i

} in higher dimensions
we get a lower but still substantial speedup. For example, for
N = 10

4 and dimension = 5, 10, 20, 50, 75, 100, 150, 200

the speedups are all between 7⇥ and 14⇥, the largest the
speedup being for dimension = 200.

Like in packing and MPC, the time to copy the final
result z from the GPU to the CPU is negligible, 60ms for
z 2 R2⇥105

. The time to copy the factor-graph from the
CPU to the GPU is again the slowest time, taking up to
358s for N = 7.5 ⇥ 10

4 data points. However, just like
for packing and MPC, in SVM the factor-graph is always
the same for problem instances with the same number of
data points. Therefore, in many practical applications, the
factor-graph only needs to be copied to the GPU once and
if the user wants to solve a new problem he needs only load
new data onto the GPU, which must be done regardless of
which method/software used. In addition, the total time for
convergence usually dominates and makes the copy time
negligible.

Figure 14 reports speedups using multiple CPU-cores
for x

i

2 R2. The right plot shows that 32 CPU-cores
provides the maximum speedup, up to 5.8⇥. In line with
previous experiments, speedups using multiple CPU-cores
are not as large and does not behave as well with N as
the GPU speedups. The individual updates are also mostly
equally heavy, taking each between 19% and 25% of the
time per iteration. Interestingly, for this problem, the m-
update seems to be particularly hard to speedup (2.6⇥
for N = 7.5 ⇥ 10

4) and the z-update relatively easy to
speedup (6.2⇥ for N = 7.5 ⇥ 10

4). We note that for
higher-dimensional data we get better speedup with multiple
CPU-cores (e.g. we get 9.6⇥ for N = 10

4, 32 cores, 200

dimensions).

VI. CONCLUSION AND FUTURE WORK

We have shown that a fine-grained parallelization of the
ADMM allows automatic and efficient parallelism, freeing
the user from writing any serial code while still achieving
good speedups. In the context of GPUs, our ADMM scheme
is atypical in three ways
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this section we work with the soft margin SVM but there are
many other different variants of SVM. In this formulation,
given a data set of N vectors {x

i

}N

i=1 with labels {y

i

}N

i=1

taking values in {�1, +1} the objective is to find the slab
(w, b) that separates the +1 vectors from the �1 vectors as
well as possible. The quality of the separation is measured
by the norm of w and by N non-negative slack variables
{⇠

i

}N

i=1.
Figure 12 gives the details of our formulation and factor-

graph decomposition. Notice that we create multiple copies
of the w variable and break the term in the objective
function associated with w into N equal parts. This makes
the distribution of the number of edges-per-node in the
factor-graph more equilibrated, which in the current version
of parADMM is important to distribute the computations
as equally as possible among the different GPU-cores and
improve GPU performance (c.f. Conclusion). The number
of elements in the factor-graph grows linearly with N .

To test the automatic speedup we can achieve we draw
N random data points from two Gaussian distributions with
mean a certain distance apart. We do this several times such
that our results are averages over multiple random datasets.
Figure 13 summarizes our results for x

i

2 R2. Figure 13-left
shows that we can achieve more than 18⇥ speedup for large
problems using a GPU vs. a single CPU-core. We also see
that the time per iteration grows linearly with N and hence
linearly with the number of elements in the factor-graph as
expected. Figure 13-right shows that the individual speedups
of the different kinds of updates rank in very similar order to
those in circle packing and MPC, the x and z updates being
the hardest to speedup. In our GPU experiments, the x and z

updates again take a large fraction of the time per iteration,

namely 28% + 23% = 51%. For {x

i

} in higher dimensions
we get a lower but still substantial speedup. For example, for
N = 10

4 and dimension = 5, 10, 20, 50, 75, 100, 150, 200

the speedups are all between 7⇥ and 14⇥, the largest the
speedup being for dimension = 200.

Like in packing and MPC, the time to copy the final
result z from the GPU to the CPU is negligible, 60ms for
z 2 R2⇥105

. The time to copy the factor-graph from the
CPU to the GPU is again the slowest time, taking up to
358s for N = 7.5 ⇥ 10

4 data points. However, just like
for packing and MPC, in SVM the factor-graph is always
the same for problem instances with the same number of
data points. Therefore, in many practical applications, the
factor-graph only needs to be copied to the GPU once and
if the user wants to solve a new problem he needs only load
new data onto the GPU, which must be done regardless of
which method/software used. In addition, the total time for
convergence usually dominates and makes the copy time
negligible.

Figure 14 reports speedups using multiple CPU-cores
for x

i

2 R2. The right plot shows that 32 CPU-cores
provides the maximum speedup, up to 5.8⇥. In line with
previous experiments, speedups using multiple CPU-cores
are not as large and does not behave as well with N as
the GPU speedups. The individual updates are also mostly
equally heavy, taking each between 19% and 25% of the
time per iteration. Interestingly, for this problem, the m-
update seems to be particularly hard to speedup (2.6⇥
for N = 7.5 ⇥ 10

4) and the z-update relatively easy to
speedup (6.2⇥ for N = 7.5 ⇥ 10

4). We note that for
higher-dimensional data we get better speedup with multiple
CPU-cores (e.g. we get 9.6⇥ for N = 10

4, 32 cores, 200

dimensions).

VI. CONCLUSION AND FUTURE WORK

We have shown that a fine-grained parallelization of the
ADMM allows automatic and efficient parallelism, freeing
the user from writing any serial code while still achieving
good speedups. In the context of GPUs, our ADMM scheme
is atypical in three ways
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Figure 13. GPU speedup for binary classification. (Left) Combined
updates; (Right) Individual updates.

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

18

Number of circles N 

Sp
ee

du
p 

Ti
m

e 
fo

r 1
0 

ite
ra

tio
ns

 (s
) GPU speedup 

Multi C
PU speedup 

Single CPU time 

Multi CPU time 

GPU time 

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Number of cores 

M
ul

ti 
C

PU
 s

pe
ed

up
 

0 1 2 3 4 5 6 7
x 104

0

2

4

6

8

10

12

14

16

18

Number of circles N 

Sp
ee

du
p 

Ti
m

e 
fo

r 1
00

0 
ite

ra
tio

ns
 (s

) GPU speedup 

Multi CPU speedup 

Single CPU time 

Multi CPU time 

GPU time 

5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of cores 

M
ul

ti 
C

PU
 s

pe
ed

up
 

Number of circles N 

Sp
ee

du
p 

Ti
m

e 
fo

r 1
00

0 
ite

ra
tio

ns
 (s

) GPU speedup 

Multi CPU speedup 

Single CPU time Multi CPU time 
GPU time 

0 2 4 6 8 10
x 104

0

2

4

6

8

10

12

Number of cores 

M
ul

ti 
C

PU
 s

pe
ed

up
 

0 5 10 15 20 25 30 350.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1. Problem



There is a shortage of not-problem-specific 
general-purpose optimization tools that 
can automatically exploit GPU parallelism. 






2. Focus



The Alternating Direction Method of 
Multipliers (ADMM).



-  deals with non-smooth functions;



-  better bounds for global convergence 

rates and variants of the ADMM than for 
other first order methods such as 
Nesterov’s and gradient descent 
[Lessard et al. 14; França and Bento 15];




-  convergence guarantees for convex 

problems;


-  breaks problems into a series of parallel 
computations.







3. Questions



Can we use the ADMM to automatically 
exploit parallelism in general optimization 
without having to write problem specific 
parallel code? 




Do we get good speedup on a GPU?




Is there an advantage on using a GPU vs 
other parallel frameworks?




Our numerical experiments with three 
different domains say





YES







4. “Typical” ADMM





















It does not expose parallelism immediately 
although for specific problem it does 
become visible.






5. ADMM on factor-graph




































6. Testing fine-grained par.



GPU = TeslaK40; CPU = 2.8GHz AMD;

Multi CPU-cores = up to 32 ×2.8GHz AMD.

Software: https://github.com/parADMM/



v Combinatorial optimization: What is the 

best way to pack N circles inside a 
triangle to maximize covered area?




















v Machine learning: What is the best 

separating hyper plane for N data points 
labeled +1 or -1?






















v Optimal control: What is the best 
sequence of K inputs that filters 
perturbations?
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Figure 8. Multiple CPU vs. single CPU in circle packing. (Left) Combined
speedup. (Right) Speedup vs. number of cores for N = 5000.
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Figure 9. MPC formulation and factor-graph for K = 4.

(real-time performance does not matter) and online (real-
time performance matters).

Here we test our ADMM scheme for both GPU and
multiple CPU-cores when solving an MPC problem for a
discrete-time linear system q(t+1)�q(t) = Aq(t)+Bu(t),
where q(t) is the state of the system at time t and u(t) is
the input to the system at time t. Note that we are not the
first to use a GPU to solve MPC problems, see for example
[28]. However, the latter work used a linear-programming
interior point method that required writing problem specific
CUDA code while we only wrote serial code for each PO.

There are many different MPC formulations including,
but not limited to, robust MPC, non-linear MPC and closed-
loop MPC. In Figure 9 we show the specific formulation we
use and its corresponding factor-graph. In the factor-graph,
each variable node is associated to one q(t) and one u(t).
The variable K is the prediction horizon and we vary it
between 200 and 10

5 to test how the speedup depends on
the size of the problem. Note that the number of elements
in the factor-graph grows linearly with K. In our tests we
have A 2 R4⇥4 and B 2 R4⇥1 and both are obtained from
linearizing (around equilibrium) and sampling (every 40 ms)
a continuous time inverted-pendulum system. The matrices
Q and R are a design choice and, for simplicity sake, we
make all {Q

t

} equal and all {R

t

} equal and we make each
of them diagonal. Finally, q0 is the known state of the system

at the instant from which we predict its future behavior.
Figure 10-left shows that we can get up to 10⇥ speedup

for large problems. As expected, the time per iteration
grows linearly with the number of elements in the factor-
graph, which we know grows linearly with K. Like in
circle packing the x and z updates are the slowest updates
and take 59% + 21% = 80% of the time per iteration
respectively (K = 10

5) and also the hardest to speedup as
Figure 10-right shows. For MPC we again find that using
ntb = 32 threads per block gives the best performance. The
exception is the z-update for which we find that using a
smaller ntb gives better performance. More specifically, for
K = 200, 10

3
, 10

4
, 5⇥10

4
, 10

5 we find that the optimal ntb

in the z-update are 2, 8, 16, 16, 16 respectively.
The time to copy the final result from the GPU to the CPU

is negligible, about 3ms for K = 10

5. The time to copy the
factor-graph from the CPU to the GPU can take up to 13

seconds for K = 10

5, which is negligible also compared to
the number of iterations until convergence (more that several
thousands for K = 10

5) and a random initialization of the
ADMM. In addition, in the context of solving a problem in
real-time, we only need to create and move the graph to the
GPU once. In each cycle of our feedback controller we only
need to update the value in the GPU of the current state of
the system, which can be done almost instantaneously and
then run a few more ADMM iterations on the factor-graph
already on the GPU starting from the ADMM solution of
the previous cycle.

In Figure 11-left we report the test of our fine-grained
parallelism using 25 CPU cores. We use 25 cores since this
seems to produce the highest speedup. In fact, Figure 11-
right shows that for large problems, as we add more cores,
the performance actually gets hurt. The best speedup is about
5⇥ and, just like for circle packing using multiple CPU-
cores, varies a bit irregularly with the problem size. When
using multiple cores, the slowest updates are the m, u and
n updates which take 25%+19%+16% = 60% of the time
per iteration respectively (for K = 10

5).

C. Machine learning

Support Vector Machines (SVM) are used successfully in
many real world problems, e.g. cancer diagnosis [29]. In
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Individual updates.
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(real-time performance does not matter) and online (real-
time performance matters).

Here we test our ADMM scheme for both GPU and
multiple CPU-cores when solving an MPC problem for a
discrete-time linear system q(t+1)�q(t) = Aq(t)+Bu(t),
where q(t) is the state of the system at time t and u(t) is
the input to the system at time t. Note that we are not the
first to use a GPU to solve MPC problems, see for example
[28]. However, the latter work used a linear-programming
interior point method that required writing problem specific
CUDA code while we only wrote serial code for each PO.

There are many different MPC formulations including,
but not limited to, robust MPC, non-linear MPC and closed-
loop MPC. In Figure 9 we show the specific formulation we
use and its corresponding factor-graph. In the factor-graph,
each variable node is associated to one q(t) and one u(t).
The variable K is the prediction horizon and we vary it
between 200 and 10

5 to test how the speedup depends on
the size of the problem. Note that the number of elements
in the factor-graph grows linearly with K. In our tests we
have A 2 R4⇥4 and B 2 R4⇥1 and both are obtained from
linearizing (around equilibrium) and sampling (every 40 ms)
a continuous time inverted-pendulum system. The matrices
Q and R are a design choice and, for simplicity sake, we
make all {Q

t

} equal and all {R

t

} equal and we make each
of them diagonal. Finally, q0 is the known state of the system

at the instant from which we predict its future behavior.
Figure 10-left shows that we can get up to 10⇥ speedup

for large problems. As expected, the time per iteration
grows linearly with the number of elements in the factor-
graph, which we know grows linearly with K. Like in
circle packing the x and z updates are the slowest updates
and take 59% + 21% = 80% of the time per iteration
respectively (K = 10

5) and also the hardest to speedup as
Figure 10-right shows. For MPC we again find that using
ntb = 32 threads per block gives the best performance. The
exception is the z-update for which we find that using a
smaller ntb gives better performance. More specifically, for
K = 200, 10

3
, 10

4
, 5⇥10

4
, 10

5 we find that the optimal ntb

in the z-update are 2, 8, 16, 16, 16 respectively.
The time to copy the final result from the GPU to the CPU

is negligible, about 3ms for K = 10

5. The time to copy the
factor-graph from the CPU to the GPU can take up to 13

seconds for K = 10

5, which is negligible also compared to
the number of iterations until convergence (more that several
thousands for K = 10

5) and a random initialization of the
ADMM. In addition, in the context of solving a problem in
real-time, we only need to create and move the graph to the
GPU once. In each cycle of our feedback controller we only
need to update the value in the GPU of the current state of
the system, which can be done almost instantaneously and
then run a few more ADMM iterations on the factor-graph
already on the GPU starting from the ADMM solution of
the previous cycle.

In Figure 11-left we report the test of our fine-grained
parallelism using 25 CPU cores. We use 25 cores since this
seems to produce the highest speedup. In fact, Figure 11-
right shows that for large problems, as we add more cores,
the performance actually gets hurt. The best speedup is about
5⇥ and, just like for circle packing using multiple CPU-
cores, varies a bit irregularly with the problem size. When
using multiple cores, the slowest updates are the m, u and
n updates which take 25%+19%+16% = 60% of the time
per iteration respectively (for K = 10

5).

C. Machine learning

Support Vector Machines (SVM) are used successfully in
many real world problems, e.g. cancer diagnosis [29]. In
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(real-time performance does not matter) and online (real-
time performance matters).

Here we test our ADMM scheme for both GPU and
multiple CPU-cores when solving an MPC problem for a
discrete-time linear system q(t+1)�q(t) = Aq(t)+Bu(t),
where q(t) is the state of the system at time t and u(t) is
the input to the system at time t. Note that we are not the
first to use a GPU to solve MPC problems, see for example
[28]. However, the latter work used a linear-programming
interior point method that required writing problem specific
CUDA code while we only wrote serial code for each PO.

There are many different MPC formulations including,
but not limited to, robust MPC, non-linear MPC and closed-
loop MPC. In Figure 9 we show the specific formulation we
use and its corresponding factor-graph. In the factor-graph,
each variable node is associated to one q(t) and one u(t).
The variable K is the prediction horizon and we vary it
between 200 and 10

5 to test how the speedup depends on
the size of the problem. Note that the number of elements
in the factor-graph grows linearly with K. In our tests we
have A 2 R4⇥4 and B 2 R4⇥1 and both are obtained from
linearizing (around equilibrium) and sampling (every 40 ms)
a continuous time inverted-pendulum system. The matrices
Q and R are a design choice and, for simplicity sake, we
make all {Q

t

} equal and all {R

t

} equal and we make each
of them diagonal. Finally, q0 is the known state of the system

at the instant from which we predict its future behavior.
Figure 10-left shows that we can get up to 10⇥ speedup

for large problems. As expected, the time per iteration
grows linearly with the number of elements in the factor-
graph, which we know grows linearly with K. Like in
circle packing the x and z updates are the slowest updates
and take 59% + 21% = 80% of the time per iteration
respectively (K = 10

5) and also the hardest to speedup as
Figure 10-right shows. For MPC we again find that using
ntb = 32 threads per block gives the best performance. The
exception is the z-update for which we find that using a
smaller ntb gives better performance. More specifically, for
K = 200, 10
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5 we find that the optimal ntb

in the z-update are 2, 8, 16, 16, 16 respectively.
The time to copy the final result from the GPU to the CPU

is negligible, about 3ms for K = 10

5. The time to copy the
factor-graph from the CPU to the GPU can take up to 13

seconds for K = 10

5, which is negligible also compared to
the number of iterations until convergence (more that several
thousands for K = 10

5) and a random initialization of the
ADMM. In addition, in the context of solving a problem in
real-time, we only need to create and move the graph to the
GPU once. In each cycle of our feedback controller we only
need to update the value in the GPU of the current state of
the system, which can be done almost instantaneously and
then run a few more ADMM iterations on the factor-graph
already on the GPU starting from the ADMM solution of
the previous cycle.

In Figure 11-left we report the test of our fine-grained
parallelism using 25 CPU cores. We use 25 cores since this
seems to produce the highest speedup. In fact, Figure 11-
right shows that for large problems, as we add more cores,
the performance actually gets hurt. The best speedup is about
5⇥ and, just like for circle packing using multiple CPU-
cores, varies a bit irregularly with the problem size. When
using multiple cores, the slowest updates are the m, u and
n updates which take 25%+19%+16% = 60% of the time
per iteration respectively (for K = 10

5).

C. Machine learning

Support Vector Machines (SVM) are used successfully in
many real world problems, e.g. cancer diagnosis [29]. In
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(real-time performance does not matter) and online (real-
time performance matters).

Here we test our ADMM scheme for both GPU and
multiple CPU-cores when solving an MPC problem for a
discrete-time linear system q(t+1)�q(t) = Aq(t)+Bu(t),
where q(t) is the state of the system at time t and u(t) is
the input to the system at time t. Note that we are not the
first to use a GPU to solve MPC problems, see for example
[28]. However, the latter work used a linear-programming
interior point method that required writing problem specific
CUDA code while we only wrote serial code for each PO.

There are many different MPC formulations including,
but not limited to, robust MPC, non-linear MPC and closed-
loop MPC. In Figure 9 we show the specific formulation we
use and its corresponding factor-graph. In the factor-graph,
each variable node is associated to one q(t) and one u(t).
The variable K is the prediction horizon and we vary it
between 200 and 10

5 to test how the speedup depends on
the size of the problem. Note that the number of elements
in the factor-graph grows linearly with K. In our tests we
have A 2 R4⇥4 and B 2 R4⇥1 and both are obtained from
linearizing (around equilibrium) and sampling (every 40 ms)
a continuous time inverted-pendulum system. The matrices
Q and R are a design choice and, for simplicity sake, we
make all {Q

t

} equal and all {R

t

} equal and we make each
of them diagonal. Finally, q0 is the known state of the system

at the instant from which we predict its future behavior.
Figure 10-left shows that we can get up to 10⇥ speedup

for large problems. As expected, the time per iteration
grows linearly with the number of elements in the factor-
graph, which we know grows linearly with K. Like in
circle packing the x and z updates are the slowest updates
and take 59% + 21% = 80% of the time per iteration
respectively (K = 10

5) and also the hardest to speedup as
Figure 10-right shows. For MPC we again find that using
ntb = 32 threads per block gives the best performance. The
exception is the z-update for which we find that using a
smaller ntb gives better performance. More specifically, for
K = 200, 10
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5 we find that the optimal ntb

in the z-update are 2, 8, 16, 16, 16 respectively.
The time to copy the final result from the GPU to the CPU

is negligible, about 3ms for K = 10

5. The time to copy the
factor-graph from the CPU to the GPU can take up to 13

seconds for K = 10

5, which is negligible also compared to
the number of iterations until convergence (more that several
thousands for K = 10

5) and a random initialization of the
ADMM. In addition, in the context of solving a problem in
real-time, we only need to create and move the graph to the
GPU once. In each cycle of our feedback controller we only
need to update the value in the GPU of the current state of
the system, which can be done almost instantaneously and
then run a few more ADMM iterations on the factor-graph
already on the GPU starting from the ADMM solution of
the previous cycle.

In Figure 11-left we report the test of our fine-grained
parallelism using 25 CPU cores. We use 25 cores since this
seems to produce the highest speedup. In fact, Figure 11-
right shows that for large problems, as we add more cores,
the performance actually gets hurt. The best speedup is about
5⇥ and, just like for circle packing using multiple CPU-
cores, varies a bit irregularly with the problem size. When
using multiple cores, the slowest updates are the m, u and
n updates which take 25%+19%+16% = 60% of the time
per iteration respectively (for K = 10

5).

C. Machine learning

Support Vector Machines (SVM) are used successfully in
many real world problems, e.g. cancer diagnosis [29]. In

×104
0 2 4 6 8 10
0

2

4

6

8

10

12

Prediction Horizon K

CPU time

Speedup

GPU time

Sp
ee

du
p

Ti
m

e
fo

r
1
0
0

ite
ra

tio
ns

(s
)

×104
0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

Prediction Horizon K

x-update

z-update

m-update

n-update

u-update

Sp
ee

du
p

Figure 10. GPU speedup for MPC. (Left) Combined updates; (Right)
Individual updates.

Testing fine-grained parallelism for the ADMM on a factor-graph

                             Ning Hao       AmirReza Oghbaee       Mohammad Rostami      Nate Derbinsky       José Bento



