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ABSTRACT
We demonstrate a framework (CoEv-Soar-RL) for a logistics enter-
prise to improve readiness, sustainment, and reduce operational
risk. The CoEv-Soar-RL uses reinforcement learning and coevolu-
tionary algorithms to improve the functions of a logistics enterprise
value chain. We address: (1) holistic prediction, optimization, and
simulation for the logistics enterprise readiness; (2) the uncertainty
and lack of data which require large-scale systematic what-if sce-
narios to simulate potential new and unknown situations. In this
paper, we perform four experiments to investigate how to integrate
prediction and simulation to modify a logistics enterprise’s demand
models and generate synthetic data based. We use general domain
knowledge to design simple operators for the coevolutionary search
algorithm that provide realistic solutions for the simulation of the
logistic enterprise. In addition, to evaluate generated solutions we
learn a surrogate model of a logistic enterprise environment from
historical data with Soar reinforcement learning. From our experi-
ments we discover, and verify with subject matter experts, novel
realistic solutions for the logistic enterprise. These novel solutions
perform better than the historical data and where only found when
we include knowledge derived from the historical data in the co-
evolutionary search.
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1 INTRODUCTION
A logistics enterprise (LE) can be large and complex since it can
contain multiple business processes from the areas of maintenance,
transportation, and finance as a whole system. E.g. the U.S. Marine
Corps (USMC) maintenance and supply chain is a complex enter-
prise. Logisticians in e.g. the Department of Defense, are trained
consistently and they simultaneously work from clear operating
procedures that outline every alternative and that help them make
decisions. Moreover, the LE is in constant flux due to changes in
components, component drift and attrition. A change, addition, or
loss to a component has a ripple effect, impacting time to com-
pletion, servicing, purchases, transportation, etc. Finally, the LE
have constantly changing demands or conditions from users and
situational context.

These properties highlight the importance of analyzing LEs, plus
forecast risks. However, the LE is frequently not accessible (e.g.
proprietary), difficult to probe, or, cannot be experimented with
(information is sensitive). This implies that a model of the LE cannot
be provided and experimented with. Our goals are to:

(a) Provide the LE management with demands or conditions,
within an envelope of realism, that pose risk on the LE’s perfor-
mance.

(b) Provide the LE management with sets of novel logistician
decisions on each alternative that can provide better performance.

The only information available are historical records stored in
multiple databases. Information is extracted and fused from these
databases and fused it, to offer snapshots. Each snapshot indicates:
(a) from each possible alternative every logistician could face, which
ones were decided upon (b) from all possible situational demands
or conditions, which ones were made (c) a "performance measure
of the LE" as a score is possible to derive to use as a proxy for
something like average time through system, costs, etc.

Our effort is focused on working with a snapshot of historical
data to provide novel demands or conditions, within an envelope of
realism, that are risky. These will help the LE management assess
and mitigate unknown risk. Furthermore, it provides the LE man-
agement with novel sets of logistician decisions on each alternative
that result in better performance.

To solve this challenge we develop and demonstrate a two com-
ponent framework containing: (a) a surrogate model of the LE (b) a
competitive coevolutionary algorithm We abstract the logistics
training discipline and situational demands or conditions without
loss of generality. Thus, we can assume there exists knowledge of
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a set of possible binary alternatives that actors in the LE, i.e. "logis-
ticians" can decide upon, such as resource allocations. Moreover,
there is also knowledge of possible binary alternatives that describe
the presence or absence of demands or conditions from users or
exogenous conditions.

First we train our surrogate model with Soar-RL [5] to translate
from the historical performance scores predicted from a set of (bi-
nary, known) demands or conditions and corresponding decisions.
In a second step we abstract the logisticians’ decisions as solutions
and demands or conditions as tests1, then, using the model from
Soar-RL, we run a competitive coevolutionary algorithm [2, 4] (i.e..
min-max objectives) that allows a population of candidate solu-
tions (trying to maximize the performance) against a population
of candidate tests (trying to minimize performance as a means of
finding potential risk), where a solution engages with a test and the
outcome is derived from the surrogate model. We seed the initial
pops with best from history. This is difficult unless we (a) Add
constraints of realism (b) Consider pairwise value by comparison
(c) Use domain-specific operators, i.e. mutation and crossover We
show that this finds novel LE solutions and tests that translate to
answers verified by subject matter experts of the USMC LE.

2 BACKGROUND
Soar Reinforcement Learning (Soar-RL). Soar-RL [5] is a cognitive

architecture that scalably integrates a rule-based AI system with
many other capabilities, including reinforcement learning. By using
Soar-RL, a self-player or opponent take state/action attribute com-
binations to learn its preference 𝑓𝑑 (𝐷) and 𝑓𝑎 (𝐴), respectively. 𝐷
(for self-player) and 𝐴 (for opponent) could be different and asym-
metric. A state attribute is an input variable that a player can not
change and an action attribute is an one the player can decide its
value. To translate this into a coevolutionary algorithm simulation,
a preference is the contribution of a rule 𝑓𝑘 to be selected for a
self-player to win. We define preferences 𝑝 (𝑓𝑘 , 𝑣1, 𝑐1), 𝑝 (𝑓𝑘 , 𝑣0, 𝑐1),
𝑝 (𝑓𝑘 , 𝑣1, 𝑐0), and 𝑝 (𝑓𝑘 , 𝑣0, 𝑐0), where 𝑝 (𝑓𝑘 , 𝑣1, 𝑐1) means “if an at-
tribute 𝑓𝑘 is present (𝑣 = 1) there is a preference (probability) of
𝑝 (𝑓𝑘 , 𝑣1, 𝑐1) for the player to win the game in the end (𝑐 = 1),” i.e.
win the game means fitness is one.

The total preference is the summation of the preferences from
each of the state/action attribute combinations. There are 𝐾 at-
tributes. The Soar-RL reward is calculated as:

𝑟 =

𝐾1∑︁
𝑘=1

𝑝 (𝑓𝑘 , 𝑣1, 𝑐1) − 𝑝 (𝑓𝑘 , 𝑣1, 𝑐0) +
𝐾0∑︁
𝑘=1

𝑝 (𝑓𝑘 , 𝑣0, 𝑐1) − 𝑝 (𝑓𝑘 , 𝑣0, 𝑐0)

(1)

where𝐾1, 𝐾0 denote the number of 1 (present) and 0 (not present)
for an input data point with 𝐾 attributes. The self-player gains a
positive reward 1 if a correct action is taken at time 𝑡 or a negative
reward −1 if an incorrect action is taken.

Coevolutionary Algorithms. Coevolutionary algorithms [4] are
related to evolutionary algorithms [1] and explore domains inwhich
the quality of a candidate solution is determined by its ability to
successfully pass some set of tests (attacks). For example, solutions
1We use solutions, self-player, defender and blue interchangeably to refer to the
logisticians decisions. Tests, opponent, attacker and red interchangeably refer to the
demands or conditions on the logistic enterprise

(defenses) in a logistics chain need to pass the known operating
conditions that are difficult or adversarial tests (attacks).

A basic coevolutionary algorithm evolves two populations with
e.g. tournament selection and for variation uses crossover and mu-
tation. One population comprises tests (attacks) and the other solu-
tions (defenses). In each generation, engagements are formed by
pairing attack and defense. The populations are evolved in alternat-
ing steps: first the test population is selected, varied, updated and
evaluated against the solutions, and then the solutions population
is selected, varied, updated and evaluated against the tests. Each
test–solution pair is dispatched to the engagement component and
the result is used as a part of the fitness for each of them. Fitness is
calculated as the mean expected utility of the engagements.

3 DOMAIN SPECIFIC OPERATORS
Domain specific knowledge is provided by information from histor-
ical data, X ∈ R𝑁×𝑛 , where each row is a set of decisions d. We use
general and simple domain knowledge to inform the coevolution-
ary search operators. The aim is to concentrate the search around
realistic regions provided by the historical data, i.e. provide “knowl-
edge” of the domain to the operators with information from the
historical data. From this we count the positive decisions from the
data, 𝑑𝑝 , , the average number of positive decision 𝑑𝑝 , and standard
deviation, 𝑠𝑑 , as well as the max positive decisions 𝑑𝑚 .

Mutation We provide knowledge to mutation by taking the
number of positive decisions into account for mutation. We use
decision flip mutation, i.e. flipping a positive (1) to a negative (0)
decision, negative to a positive decision, or both.
Flip 1 to 0 and 0 to 1 Flip a positive decision to a negative and flip
a negative decision to a positive decision. This leaves the number
of positive decisions unchanged, 𝑑𝑝 (d) = 𝑑𝑝 (d′). We uniformly
randomly chose a positive decision and make it negative. Then
we uniformly randomly chose a negative decision and make it
positive. The probability of this mutation, 𝑝𝑚 is 𝑝𝑚 = min(0.9, 𝑝 ′𝑚),
𝑝 ′𝑚 = 1

( |𝑑𝑝 (d)−𝑑𝑝 |/𝑠𝑑 )2
.

Flip 1 to 0 Flip a positive decision to a negative. This reduces the
number of positive decisions by one, 𝑑𝑝 (d) − 1 = 𝑑𝑝 (d′). We uni-
formly randomly chose a positive decision and make it negative.
The probability for this is 𝑝𝑑 = −𝑝2𝑚 + 𝑝𝑚
Flip 0 to 1 Flip a negative decision to a negative decision. This in-
creases the number of positive decisions by one, 𝑑𝑝 (d) + 1 = 𝑑𝑝 (d′).
We uniformly randomly chose a negative decision and make it
positive. The probability is 𝑝𝑎 = 𝑝2𝑚 − 2𝑝𝑚

Crossover Domain specific positive decision aware variation
by crossover is a modification of one-point crossover. The crossover
point is selected to prevent one of the new solutions to have too
many positive decisions (and the other too few). Themaximumnum-
ber of positive decisions for a new solution is based on the Gaussian
distribution of positive decision in the data, 𝑥𝑚 ≈ N(𝑑𝑝 , 𝑠𝑑 ). The
crossover point based on the positive decisions in the first indi-
vidual is uniformly randomly chosen as 1 < 𝑥1𝑝 < 𝑥𝑚 and for the
second individual as 1 < 𝑥2𝑝 < 𝑑𝑝 − 𝑥𝑚

Initialization The initial population are the top 𝑘 (population
size) decision from the historical data.

515



Using Domain Knowledge in Coevolution and Reinforcement Learning to Simulate a Logistics EnterpriseGECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Fitness Function The number of positive decisions are also re-
duced by penalizing the fitness. Previous studies showed that taking
many positive decision increased the fitness, but is not realistic [6].
Fitness, 𝑦 ∈ [−1, 1] is based on the Soar-RL reward, 𝑟 and “realism”
derived from the data. Basic fitness: 𝑦 = 𝑟 Length fitness: 𝑦 = 𝑟 −
𝑟𝑑 Positive decision penalty if𝑑𝑝 > 𝑑𝑚 is 𝑟𝑑 = 𝐶𝑙 (𝑑𝑝 (d)−𝑑𝑚)2,𝐶𝑙 ∈
R is a length penalty constant. Lift fitness: 𝑦 = 𝑟 + 1/2∑𝑑∈d 𝐿(𝑑) If
association information is use the fitness is adjusted. Association
information, lift (𝐿) is normalized in 𝑎 ∈ [0, 1]. Lift and length
fitness: 𝑦 = 𝑟 − 𝑟𝑑 + 1/2∑𝑑∈d 𝐿(𝑑) The fitness of an individual is
the solution concept mean expected utility, i.e. the mean of all the
fitness function values for an individual.

Domain knowledge with Lexical Link Analysis (LLA) We
use an unsupervised text analysis method called lexical link analysis
(LLA) to construct domain-dependent models for CoEv-Soar-RL [7].
In our case a word describes decision. The links between two nodes
represent the likelihood of the two word features (i.e., attributes
and their corresponding value or value ranges) occurring in the
same context in the data. LLA computes the strength of a link
between two word features 𝑤𝑙 and 𝑤𝑘 using the lift (L) measure
𝐿𝑙𝑘 =

𝑃 (𝑤𝑙 |𝑤𝑘 )
𝑃 (𝑤𝑙 ) where 𝑃 (𝑤𝑙 |𝑤𝑘 ) is the probability of word features

𝑤𝑙 occurs in the same context where word feature𝑤𝑘 occurs and
𝑃 (𝑤𝑙 ) is the prior probability of occurrence of the word feature𝑤𝑙 .

4 COEV-SOAR-RL FOR A USMC LOGISTICS
ENTERPRISE

We use a proprietary USMC maintenance and supply chain data
set. Some operational cost and risk comes from the uncertainty and
unknown operation conditions that constitute the key challenges
for the USMC maintenance and supply chain.

CoEv-Soar-RL. We use the following setup: Opponent: The test
conditions of the USMCS LE. Self-player: Logistics chain solutions
with data fields are decisions and actions that can be taken to pass
the tests and improve performance. Performance : The probability
to have the maintenance days between deadlined and closed less
than an average computed from the historical data set.

We use Soar-RL to learn a surrogate model to use as a fitness
function between test, solution, and fitness, i.e. 𝑓𝑑 (𝐷) and 𝑓𝑎 (𝐴),
separately for both a self-player and opponent. For coevolution we
use Soar-RL as a surrogate model [3]. The test (opponent) minimizes
the fitness and the solution (self-player) maximizes the fitness.

Setup. We fuse data for a type of USMC equipment from a few
databases including maintenance, supply, and equipment usage.
We then aggregate the data for each service ticket. A total of 489
aggregated variables represent states and actions for both the self-
player and opponent. We divide the variables into two groups: the
opponent has 369 variables labeled (O) and the self-player has 120
variables labeled (S). The number of rules learned from the data
set using Soar-RL for the fitness functions 𝑓𝑑 (𝐷) and 𝑓𝑎 (𝐴) are
489 ∗ 4 = 1956, respectively.

We used a version of Donkey GE2 with each decision encoded
as positive (1) or negative (0). Duplicates are disallowed in the
population.

2https://github.com/flexgp/donkey_ge

Experiments. We want to show that the CoEv-Soar-RL can use
the association patterns discovered from the data, consequently, to
bias the search towards novel high performing realistic solutions.
The experiments are: Baseline (E1): The fitness is calculated by
Basic fitness. Length (E2): Use a length penalty. Fitness is calculated
by Length fitness. Lift (E3): Use the context-dependent models
without length-penalty. The fitness is calculated by Lift fitness. Lift
and length (E4): Use both context-dependent models and length
penalty. Fitness is calculated by Lift and length fitness.

The fitness function is different for the four experiments. So the
results are analyzed in terms of Soar-RL reward, 𝑟 in Eq. (1), which
represents the probability to have the maintenance days between
deadlined and closed is less than the average computed from the
historical data set.

5 RESULTS AND DISCUSSIONS
This sections answers the research questions regarding the impact
on performance from using context information in the form of
length penalty and association lift.

Baseline (E1). Figure 1a show the Defender’s rewards in the
baseline model over generations. The fitness used in the search is
the Soar-RL reward(𝑟 in Equation (1)). The trends show that (a) the
best Defender, representing logistics solutions, gets worse against
the best Attacker (Best vs Best) while the Attacker, representing
logistics tests, gets better against the best Defender (Best vs Best).
(b) the best Defender does not get worse against average Attackers
(Best-mean) while the Attacker gets better (Best-mean).

Effect of length (E2). Context is provided by penalizing the fitness
when the number of positive decisions are greater than what was
observed in the historical data. Figure 1b show that the rewards for
Attacker and Defender’s Best vs Best do not change.

Effect of lift (E3). The fitness is impacted based on historically
good solutions by using association lift to provide context to the
search. Figure 1c show that the rewards for the best Defender versus
the best Attacker is decreasing initially, but is stabilized around
generation 40 to 110. In a sense, the enterprise might be vulnerable
and at risk for handling more serious tests.

Effect of lift and length (E4). Figure 1d show the trends of context-
dependent models using associations from LLA. Associations from
LLA are used to weight on realistic solutions. The plot shows:
(1) The best Defender does not get worse and even get better around
Generation 80-100 against the best Opponent or Attacker (Best vs
Best) while the Attacker can get worse against the best Defender
(Best vs Best). (2) The best Defender does not get worse against
average Attackers (Best-mean) while the Attacker does not get
better (Best-mean). The two seem to oscillate. (3) In Generation 120,
the Best vs Best Defender generates higher Soar-RL reward than
the ones in the original database, corresponding to new realistic
solutions that are novel.

Future work is other problem formulations and sensitivity test-
ing, as well as investigating the constraints that can be introduced
by the grammar and rules when there is no historical data.
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(a) Defender reward, Baseline (E1) (b) Defender reward, Length (E2)

(c) Defender reward, Lift (E3) (d) Defender reward, Lift and length (E4)

Figure 1: Line plot of reward over generations for the defender. x-axis is generation, y-axis is the Soar-RL reward for defender;
Population-Mean is the mean reward in the population; Population-Max is the max reward in the population; Population-Min
is the minimum reward in the population; The best solution is the leftmost solution shown in heatmaps (which has the best
mean fitness against all the attackers in the population during the coevolutionary search); Best-Min is the min reward for the
best solution; Best-Mean is the mean reward for the best solution; Best vs Best is the reward for best solutions against each
other (top left corners in heatmaps).
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