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Abstract

In this paper we present the game of cornhole as a com-
pelling, accessible, and adaptable AI robotics task. Cornhole
is a fun and social game with simple rules, but involves strat-
egy and physical training for humans to play competitively;
thus, developing a robot that can play at the level of even the
average human player presents a multitude of opportunities
for curricular integration at a variety of levels. We character-
ize the AI tasks involved with the game, and present results
and resources gained from preliminary offerings.

Cornhole1 is a game in which players take turns throwing
bean bags at angled platforms, each with a hole (e.g. see
Figure 1). Though typically a casual social game, compet-
itive cornhole has also been gaining traction – for exam-
ple, ESPN covered the American Cornhole Organization’s
World Championships of Cornhole (2015). Despite this at-
tention, to our knowledge, no one has attempted to build a
robot that can play the game, and so we see cornhole as an
exciting, yet accessible, AI robotics task for undergraduate
education with a diverse and adaptable set of challenges.

Figure 1: Example play, one player “pitches” a bag at a time.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Depending upon the region, the sport may be known by a va-
riety of names, including dummy boards, [bean] bag toss, dadhole,
doghouse, Baggo, or Bags.

Figure 2: Court layout, viewed from above; the right board
includes an example game state (foul bags not shown).

Rules of the Game

According to the American Cornhole Organization (ACO;
2016), the game can be played by 2 players (1 per team,
“singles”) or 4 players (2 per team, “doubles”). Once each
player on a side of the court (see Figure 2) has pitched all
(4) of their bags, the “frame” has ended and scoring com-
mences: each bag that remains on the board (a “woody”)
gains 1 point, each bag that passes through the cornhole
board hole at anytime within the frame (a “cornhole”) gains
3 points, and any other bags (each a “foul”) do not affect the
score. It is important to note that while pitching, it is pos-
sible for one player to [un]intentionally cause a prior bag
in the frame, from either team, to transition between states
(e.g. an aggressive player could knock another player’s bag
off the board) – this is why scoring must wait till the end of
a frame. Typically “cancellation” scoring is used: the points
of one player cancel out the points of their opponent, and so
up to one team can score per frame. For example, consider
the state illustrated on the right board of Figure 2: Red earns
one (1) woody and one (1) cornhole, while Blue earns two
(2) woodies and zero (0) cornholes, and so 4 points - 2 points
= 2 points are awarded to Red for that frame. If playing sin-
gles, the players switch court sides and repeat; in doubles,
the other two players then toss from the opposite board. The
game ends when a team’s score reaches or exceeds 21 points.
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AI Challenges for a Robotic Player

Developing a robotic cornhole player involves tackling a va-
riety of AI problems, including . . .

State Estimation What is the current state of the frame, in-
cluding location of the board2 & hole, as well as the loca-
tion, color, and position of each bag3? This task is compli-
cated by sensor noise, dynamic lighting conditions over
the course of a game, and the frequent presence of per-
ceptually aliased states (e.g. a bag is pitched through the
hole, and is then either occluded from view or proceeds to
appear as a foul behind the board).

Robotic Actuation The primary action of the robot is to re-
liably pitch a bag according to a desired set of parameters
(e.g. velocity & angle or voltage & time delay), whereas
a secondary task involves bag management (load the next
bag for pitching, pick up pitched bags after a frame).

Environmental/Action Modeling Given a particular state
estimate, as well as actuation parameters, what will be
the [probabilistic distribution over/most likely] resulting
frame state?

Decision Making Given a range of legal actuation parame-
ters, and associated result model(s), as well as an adver-
sarial model (e.g. minimax), what is the optimal actuation
parameters in order to achieve a victory?

Adaptation There are a variety of opportunities for the
robotic player to learn, both online and offline, to im-
prove its play, including to improve state estimation
(e.g. machine-learning driven vision), actuation (e.g. self-
calibration), modeling (e.g. tune probabilistic estimates),
and decision making (e.g. guide adversarial search).

Importantly, many of these tasks can be tackled indepen-
dently, at least in part, and additionally scaled to the class
focus/level and available time/resources.

Necessary Hardware and Software

The minimal equipment necessary to engage the robotics as-
pects of this task is a cornhole set, or at least the raw mate-
rials to construct one4. If purchased, sets range from desk-
top size (presently a 10.5” x 6” x 1.1” board costs under
$15), to “backyard” sets (∼ $40-60), to certified tournament
boards ($300). (Note that this purchase will likely have pos-
itive community-building side effects.)

As discussed in a later section, we have begun work on
several of these tasks. For state estimation, we have achieved
fairly high location/color accuracy with commodity web-
cams (∼ $70) mounted on a tripod (∼ $50). For reduced-size
boards/bags, and 5–7 foot distances, we have made good

2It is common for the board itself to shift position over time.
3Bags are typically made of a flexible material, such as canvas,

twill, or synthetic suede, and filled with a particulate, such as corn,
plastic pellets, or sand – estimating the three-dimensional position
and fill-distribution of the bag can be crucial to making strategic
pitching decisions.

4Primarily wood, screws, fabric, fill & saw, drill, sewing kit.

Figure 3: Student-designed, 3D-printed pitching arm.

progress via a student-designed, 3D-printed arm using com-
modity servos and controller boards (∼ $100-200; see Fig-
ure 3). However, it is likely more expensive arms or alter-
native approaches (e.g. bag “cannons”) will be necessary to
scale to regulation distances. We have yet to successfully
tackle additional hardware-related complications, including
mobile vision, non-vision sensors, a mobile robot to collect
pitched bags, nor robotic self-managed bag inventory and
pitch preparation.

Thus far all software has been freely available, and pri-
marily open source, including Ubuntu Linux, Arduino IDE,
OpenCV, and OpenSCAD. For vision-based projects, we
have developed, and plan to freely share, a dataset of 198
annotated cornhole-frame images, as well as software to fa-
cilitate capture and annotation of new images. For fast pro-
totyping, and algorithmic development, we foresee the de-
sire to have a reasonably accurate 3D cornhole simulator,
but have not yet developed this software.

Experience to Date

At the time of writing, we have completed three semester-
long projects related to cornhole, and have two addi-
tional projects in the works. We consider ourselves in
the infrastructure-building phase of this task, where stu-
dents themselves iteratively build scaffolding for successive
projects. The ultimate goal is a set of self-contained projects,
for multiple class foci/levels, that pit students against the
task of developing robotic systems that can effectively play
the game of cornhole.

CHUCK

In the first project, a recently graduated electromechanical
undergraduate was tasked with developing a robotic actua-
tor for pitching in the game of cornhole. Importantly, the stu-
dent was not limited in method of projection, but ended up
developing CHUCK, an underhand-tossing solution, similar
to human pitching (see Figure 3).

The arm is table-mounted (see Figure 4) and can toss 5-
7 feet reliably. The static 3D-printed components are actu-
ated by one Dynamixel AX-18a servo and two Savox servos:
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Figure 4: CHUCK, the 3D-printed arm, pitching a bag.

one “shoulder” provides directional adjustment, one “el-
bow” provides projection, and one “thumb” holds/releases
the bag. An Arbotix-M microcontroller provides regulated
power and control, and is programmed via the standard Ar-
duino IDE. In total the arm parts can be purchased, and it
can be manufactured using hobbyist 3D printers, for about
$200-300, which is significantly less than many arms avail-
able for purchase.

The Arduino program running on CHUCK exposes a sim-
ple set of serial commands (i.e. an API): graspBeanBag,
throwBeanBag (parameterized via voltage and re-
lease time), rotateArm (parameterized via angle), and
disconnect. Given this language, it is trivial to instruct
CHUCK in the language of one’s choosing. As an exam-
ple, we developed a Java client that not only pitches the bag,
but takes as feedback a “reward” (woody=1, cornhole=3,
foul=0) and, using a simple temporal-difference (TD) learn-
ing algorithm (see Equation 1; Sutton and Barto 1998),
learns the correct elbow parameterization to achieve accu-
rate throws (though currently limited to no rotation and no
other bags on the board). We have released as open source5

the CAD design for CHUCK, the Arduino source for the mi-
crocontroller, and an example Java client. Though we will
certainly improve CHUCK iteratively, this progress forms a
solid base for end-to-end robotic actuation and learning.

Q(st+1, at+1) = Q(st, at) + α(rt −Q(st, at)) (1)

Q : Value Function (S ×A → IR)
s : State
a : Action
t : Time
r : Reward
α : Learning Rate

Cornhole Vision Image Dataset

After working on CHUCK, the same student proceeded to
develop an image dataset to facilitate future vision-based
projects – the result is a set of 198 annotated images. For
example, Figure 5 shows an example input image and Fig-
ure 6 shows the corresponding annotation (in JSON format).
To assist in developing this dataset, the student wrote a set

5https://github.com/cornhole

Figure 5: Image #115 from the dataset.

Figure 6: Annotation of image #115 from the dataset.

of software programs that visualize the annotation data, as
well as help automate the process of capturing and anno-
tating new images. In particular, the software (written in
C++ with OpenCV) captures an image, performs basic ob-
ject detection to “guess” at board/hole/bag locations, and
provides a simple interface by which to confirm/revise these
values. We have released both the dataset and the annota-
tion/visualization software as open source5, and invite the
community to submit their own contributions, ideally in-
cluding new boards/bags, lighting conditions, cameras, etc.
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Figure 7: Example run of the Automatic Score Keeper
(ASK) for cornhole.

ASK

As a first client of the vision dataset, two seniors in com-
puter science developed the Automatic Score Keeper (ASK)
for cornhole (Eshimkanov and Derbinsky 2017). Written
in C++, the system used OpenCV to analyze a live video
stream and, in real time, output scoring information (see
Figure 7). The students found the dataset to be crucial for
quickly prototyping their vision-based bag-detection algo-
rithm – they used it to assess progress as they iterated on var-
ious heuristic [non-learning] approaches. Once the single-
frame algorithm worked sufficiently (80-85% accuracy on
our dataset), they enabled video and the system is reasonably
accurate in empirical usage (though suffers when lighting
conditions change). The students then incorporated frame-
change detection to detect alternating throws (useful for es-
timating state), and have a functioning score keeper.

Future Plans

In this paper we presented cornhole as a compelling and
adaptable AI task. Furthermore, we have contributed a num-
ber of useful pieces, including a vision dataset, which al-
lows students to very quickly prototype and validate certain
state-estimation components, as well as an inexpensive arm
design for robotic actuation. However, we foresee that for
cornhole to be truly accessible, there needs to be additional
infrastructure-building, including . . .

Simulation For students to quickly tackle the remaining
subtasks, it will be useful to have a reasonably accu-
rate simulation system. In particular, we see this piece as
necessary to engage undergraduates in earlier years, who
may not have the experience to simultaneously engage the

challenges of electronics/mechanics, software develop-
ment, and AI. Ideally, it would be highly modular to sup-
port custom sensor and actuator noise models, as well as
optionally make use of student state-estimation/decision-
making code. (We look forward to a VR interface, which
would not only provide a natural GUI, but add engage-
ment value.)

Tournament Support To boost engagement, we are con-
sidering building software to support tournament play,
and thereby have cornhole bots compete.

Gameplay Dataset To support decision-making compo-
nents, particularly those that are learned/data-driven, we
are considering building a dataset of played games. Thus,
student systems could build opponent models, as well as
perhaps learn useful strategies for play. This is a much
larger undertaking than the vision dataset, but builds on
our existing infrastructure.

We are hopeful that the community engages in this challenge
and collaboratively supports the next generation of cornhole
AI curricula.
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