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ABSTRACT: A rarely studied issue with using persistent computational models is whether the underlying 
computational mechanisms scale as knowledge is accumulated through learning. In this paper we evaluate the 
declarative memories of Soar: working memory, semantic memory, and episodic memory, using a detailed simulation of 
a mobile robot running for one hour of real-time. Our results indicate that our implementation is sufficient for tasks of 
this length. Moreover our system executes orders of magnitudes faster than real-time, with relatively modest storage 
requirements. We also project the computational resources required for extended operations.   

1. Introduction 
There are few computational challenges to model 
behavior over short time spans when there is minimal 
prior knowledge or when there is little to no accumulation 
of knowledge or experience. The challenges arise when 
we attempt to model behavior over long time spans where 
an agent builds up internal structures based on its 
experience. As these structures accumulate, the cost of 
adding and accessing that knowledge can grow beyond 
available computational resources (Derbinsky, Laird, & 
Smith, 2010; Douglass, Ball, & Rogers, 2009). With 
efficient models, we can test and evaluate them faster, 
using cheaper systems, and use them in real-time tasks.  
 
The emphasis of our research is on tasks that require 
human-level reasoning, memory, and learning. We are 
less concerned with the detailed modeling of human 
behavior, where the goal is to match human reaction times 
and error rates. Instead, we are interested in creating 
models that perform complex tasks, using and acquiring 
large stores of knowledge across extended time spans, 
often requiring significant internal processing and 
planning. TacAir-Soar (Jones et al., 1999) and RWA-Soar 
(Hill et al., 1997), two systems that modeled U.S. pilot 
tactical behavior in fixed wing and rotary wing vehicles, 
have many of these qualities, although they did only 
limited planning and did not learn from experience. 
 
Over the last five years, we have extended the Soar 
cognitive architecture with semantic and episodic memory 
(Laird, 2008). In previous work, we evaluated the 
performance of those memories, but our evaluations had 
short comings: either they used artificial tasks (Nuxoll & 
Laird, 2007), or they focused on using pre-loaded 
knowledge and not on knowledge that accumulates 

through experience (Derbinsky & Laird, 2009; Derbinsky 
et al., 2010). Evaluations of other declarative memories in 
cognitive architectures have also focused on preloaded 
structures (Douglass et al., 2009; Douglass & Myers, 
2010), whereas evaluations of episodic memory have 
been restricted to small numbers of preloaded episodes (as 
in research on case-based reasoning) or small numbers 
(~250) of episodes (Tecuci & Porter, 2007). 
 
To fill this void, in this paper we evaluate performance 
within a simulation of a real-world task: a mobile robot 
exploring, navigating, and moving objects in a small 
building. In this task, the   agent’s   declarative memories 
build up incrementally over an hour of real-time 
execution, and the agent’s perception of the environment 
is based on detailed models of real-world sensory data. 
One goal is to discover the requirements for semantic and 
episodic memory in such a task and whether our 
implementations are sufficient to support real-time 
behavior over long time scales. A second goal is to 
discover the relative costs and benefits of the different 
memory systems for real-world tasks. One justification 
for adding semantic memory to Soar was the concern that 
maintaining large number of elements in working 
memory would significantly degrade performance, 
independent of its cognitive implausibility (Derbinsky & 
Laird, 2010). A third goal is to discover interactions 
between semantic and episodic memory. Soar provides a 
unique opportunity to pursue these goals. 

2. The Soar Cognitive Architecture 
Figure 1 shows the structure of Soar. Perception delivers 
symbolic structures to working memory, which is a 
symbolic graph. All the long-term memories retrieve 
information based on the contents of working memory 
and add, delete, or modify working memory structures. 
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The knowledge in procedural memory is encoded as rules, 
which match and fire in parallel to create working 
memory structures as well as preferences for selecting 
operators. Operators are the locus of decision making and 
include both primitive actions, such as moving or turning 
a robot, and abstract actions such as find-a-block, go-to-
the-next-room, or go-to-the-storage-room. The decision 
procedure analyzes the preferences and selects the current 
operator by adding a structure to working memory.  

Abstract operators are dynamically decomposed into 
simpler operators until a primitive operator is selected. 
Once a primitive operator is selected, rules match and 
apply   the  operator’s   actions.  For internal operators, such 
as building up an internal map, changes are made to 
working memory. For external operators, such as moving 
the robot, commands are added to the output buffer in 
working memory, and are sent to the motor system. 
Retrievals from other long-term memories are initiated by 
creating cues in those memories’ buffers.  
 
The basic cycle is to process input, fire rules that match, 
select an operator, fire rules to apply the operator, and 
then process output commands and retrievals from long-
term memory. The time to execute this processing cycle 
determines reactivity. Based on our experience with 
cognitive modeling, human behavior models, and robotic 
systems, 50 msec. is sufficient for real-time reactivity. As 
evident in Figure 1, Soar has additional memories and 
processing modules; however, they are not evaluated in 
this paper, and are not discussed further.  

3. Mobile Robot Domain 
Soar has been used to control both real (Laird & 
Rosenbloom, 1990; Laird et al., 1991) and simulated 
vehicles (Hill et al., 1997; Jones et al., 1999). For this 
evaluation, we use a system where Soar1 controls a small 

                                                           
1 Experiments used Soar 9.3.1, which is available with the 

simulation environment through sitemaker.umich.edu/soar. 

mobile robot (Figure 2; Laird, 2009). Our evaluation uses 
a simulation instead of the real robot because of the 
difficulties in running experiments in the large physical 
spaces required. Moreover, the simulated robot can run 
unattended on multiple computers at once. When Soar 
controls the real robot, it runs on a laptop perched on the 
robot as shown in Figure 2. The simulation is quite 
accurate and the Soar rules (and architecture) used in the 
simulation are exactly the same as the rules used to 
control the real robot. 

The robot can move forward and backward, and turn in 
place. It has a laser-range finder mounted in the front that 
gives distances to 180 points throughout 180 degrees. Our 
software condenses those points to 5 regions that are 
sufficient for it to navigate and avoid obstacles. The robot 
can sense its own location based on odometry, and it can 
also sense the room it is in, the location of doors and 
walls, and different types of objects. These additional 
sensors are simulated, and when controlling the real robot, 
it uses a synthesis of real and simulated sensor data. 
During a run (both real and simulated), there are 
approximately 150 sensory data elements, with 
approximately 20 values changing each cycle. The 
changes can peak at 260 per cycle when the agent moves 
from room to room because all the data about the current 
room, walls, and doorways change at once. 
 
Throughout the paper, we refer to the robot, Soar, and 
rules as an agent. We evaluate two agents that differ in 
their rules. The first is the “simple agent,” which serves as 
a knowledge-lean baseline for comparison. This agent 
explores randomly, moving from room to room, without 
maintaining any persistent. It consists of 22 rules.  
 
The second, “complex agent” can perform multiple tasks, 
including cleaning rooms and patrolling. We focus on 
room cleaning where it picks up and moves specific types 
of blocks (such as square green blocks) to a storage room. 
The complex agent dynamically constructs a map of the 
rooms, doorways, and their spatial and topological layout, 
as well as the locations of all blocks as it encounters them 
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Figure 2: Splinterbot mobile robot. 
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during its explorations. Each room, block, wall, and 
doorway is represented by 6-9 data elements in the 
agent’s   memories. The agent initially has no map 
information except for the identity of the storage room 
(but not its location).   
 
When attempting to travel to a distant room, such as when 
dropping off a block at the storage room, the agent 
internally simulates moving to neighboring rooms in its 
map, searching for a path to the storage room. This 
“simulation”  does  not   use   the external simulator, but the 
agent’s  map   knowledge. The search is a combination of 
progressive deepening (Newell & Simon, 1972) and A* 
search (Hart, Nilsson, & Raphael, 1968). The agent also 
plans when it needs to return to a previously seen block, 
or when it attempts to move to a room it has detected but 
not visited. The internal search is performed within the 
agent, using rules, spread across multiple cycles, made 
possible  by  Soar’s  support  for  a Universal Weak Method 
(Laird & Newell, 1983).  
 
The complex agent has 562 rules and is parameterized so 
that by modifying data elements in working memory, it 
performs all the variations in behavior described in this 
paper, including using either working memory or 
semantic memory to store map information, and using 
either working memory, semantic memory, or episodic 
memory to store block location information.  
 
The experiments are performed using a map with 25 
rooms connected via 24 doorways in a straight line from 
north to south. This map eliminates most variations in the 
agent’s  behavior   that  would  arise   from  random  decisions  
in a less structured map. There are a total of 44 blocks 
spread across the 25 rooms, 23 of which satisfy the 
agent’s  criteria  for  blocks  it  wants  to  move  to  the  storage  
room. These blocks are spread across the rooms so that 
there is at most one block per room. The agent starts at 
the north end and the storage room is in the southern-most 
room. Although the rooms are in a straight line, the agent 
must plan after it picks up a block to determine whether to 
go north or south to get to the storage room.  
 
All experiments are run for one hour of elapsed real-time, 
during which the agent completes approximately 1/3 of 
the task. During 1 hour, our agents execute ~25,000,000 
processing cycles. The data is aggregated every 10 
seconds, which is ~70,000 processing cycles. We focus on 
the following performance metrics. 
 Average working memory size. Although  Soar’s  rule  

matcher is relatively immune to growth effects from 
the number of rules, it is not immune to growth in the 
number of working memory elements tested by rules. 

 Average msec./processing cycle. This indicates how 
much time is required for a processing cycle. For 
these tasks, we expect the average to be low because 
usually the agent is doing minimal processing as it 
moves in a straight line toward its next destination 
(such as a doorway or a block).  

 Maximum msec./processing cycle. This indicates the 
“surge”  in computational requirements, which can be 
orders of magnitude higher than the average. The 
value of this metric determines real-time reactivity. 
Our goal is to be below 50 msec.  

 Total long-term memory size. This measures how 
much computer memory is required to hold the 
structures in semantic and episodic memory. To 
maintain efficient access, Soar’s   memories are 
maintained in the computer’s main memory (RAM). 
96 GB is a reasonable limit for current workstations. 

The data are averaged over 5 runs, except for the 
maximum msec./processing cycle. For those data, we use 
a representative run. Because Soar waits for the 
simulation environment at the end of each cycle, Soar 
uses only a fraction of the available processing time 
(~7.5%). All experiments were run on an Intel i7 
860@2.8Ghz, with 8 GB of memory. In the following 
sections, we evaluate working memory, semantic 
memory, and then episodic memory.  

4. Working Memory 
As mentioned earlier, working memory in Soar is a graph, 
with each edge of the graph being a working memory 
element that consists of an identifier, an attribute, and a 
value. Each element can be added or removed 
independent of other elements. This is in contrast to ACT-
R (Anderson, 2007), which bundles structures together as 
chunks, which are added, modified, or removed as a 
single unit. However, we will often refer to all of the 
working memory elements that share a common identifier 
as an object, which thus corresponds roughly to a chunk, 
with the object identifier corresponding to a chunk id. 
Objects in Soar refer to entities in the world (rooms, doors 
blocks), internal concepts, words, and so on. There is no 
bound on the number of elements in working memory, 
and working memory grows and shrinks over the lifetime 
of an agent as elements are added and removed.  
 
Figure 3 shows the maximum number of working 
memory elements (WMEs) for the simple and complex 
agents. As expected, working memory in the simple agent 
does not grow. The complex agent builds up working 
memory as it explores, but once it visits all rooms (at 
~770 seconds) memory levels off. As evident in the 
figure, ~ 3,000 elements are needed to represent the map 
and blocks.  
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Given the large working memory in the complex agent, 
our expectation is that we will see a significant 
degradation in performance in the cycle time of the agent 
as the memory grows. This is because the underlying 
algorithm for matching rules in Soar, called Rete (Forgy, 
1982), is designed to scale well with the number of rules, 
but not with the size of working memory. As more 
working memory elements are added, it is often the case 
that there are more ways a rule can match, and in some 
cases, that can lead to more than linear growth in the 
computational processing required to determine which 
rules match. In the specific task performed by our agents, 
the number of blocks to be picked up leads to such an 
increase when the agent must decide which block to pick 
up next after depositing a block in the storage room.  
 
Figure 4 shows the average CPU time in msec. per 
processing cycle. Both agents maintain consistent 
performance throughout the task, showing little, to no 
degradation over time, with the complex agent being 
slower on average. Moreover, the average time (<.015 
msec./cycle) is orders of magnitude faster than required 
for real-time performance (50 msec.).  

To explore the performance of the complex agent in more 
detail, in Figure 5 we examine the maximum time spent in 
a processing cycle. The simple agent has a low, stable 
maximum msec./processing cycle, while the complex 
agent has significantly more variation. That variation 
initially increases as the map is built up (0-770 seconds). 
From that point on, the highest points arise when the 
agent is choosing which block to pick up next.  

The high values are the exception, and even with them, 
the average cycle time is hundreds of times less at ~.02 
msec. Moreover, the variation is minimal when taken 
within the context of achieving a cycle time of less than 
50 msec. Thus, an important result is that maintaining all 
structures in working memory is adequate for this task.  

5. Semantic Memory 
In Soar, semantic memory holds long-term, persistent 
declarative structures that generally correspond to facts 
about objects or concepts. For this task, that includes the 
map and the location of the blocks. In Soar, structures in 
semantic memory are deliberately stored from working 
memory. Semantic memory can also be pre-loaded with 
structures from external knowledge bases such as 
WordNet (Derbinsky et al., 2010). To speed retrievals, 
our implementation uses an inverted index (similar to 
what is done in search engines), combined with statistical 
query optimizations, using SQLite as a backend.  
 
To retrieve structures from semantic memory, a Soar 
agent creates one of two types of cues in a working 
memory. In cue-based retrievals, the cue consists of 
multiple working memory elements that provide a partial 
description of an object. The semantic memory system 
finds the object in semantic memory that best matches the 
cue. The search is biased by recency, and there is no 
“spreading”  of activation as is sometimes used in ACT-R. 
In identifier retrievals, the object identifier is already in 
working memory, but its entire substructure is not. For 
example, when room structures are retrieved, they include 

Figure 3: Average size of working memory in the 
simple vs. complex agents. 

Figure 4: Average processing time per cycle in msec. in 
the simple vs. complex agents. 

Figure 5: Maximum time per cycle in msec. in the 
simple vs. complex agents. 
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the identifier of each doorway. Using this type of 
retrieval, the complete representation of doorway objects 
can be brought into working memory.   
 
For these experiments, the map of the rooms is 
incrementally added to semantic memory as the agent 
encounters a new room or block. To minimize working 
memory, the agent removes representations of distant 
rooms from working memory. One complexity is that 
when the agent is performing an internal look-ahead 
search, it must retrieve room structures from semantic 
memory as it  “imagines”  moving  through  those  rooms. 
 
The use of semantic memory to hold rooms and objects 
can change some aspects of agent behavior. One example 
is when the agent has just dropped off a block in the 
storage room and needs to decide which block it should 
pick up next. When the blocks are all in working memory, 
a rule can match all blocks and create a pickup operator 
for each one, and the agent can compute the distance to 
each block and use that information in choosing an 
operator. When using semantic memory, the agent cues a 
retrieval using the characteristics of the object, such as its 
color and shape, but cannot use distances to the agent, 
which are not maintained in semantic memory because 
they are constantly changing. Instead, the agent retrieves 
the most recent object it has seen.  
 
Figures 6-8 compare an agent that stores the map in 
working memory (this is the same agent as the complex 
agent in Figures 3-5) with an agent that stores the map in 
semantic memory. The total number of objects stored in a 
run is ~1000, with ~700 cue-based retrievals and ~700 
identifier retrievals. The structures in semantic memory 
take ~.6 MB.  
 
When the map structure is maintained in semantic 
memory, the average size of working memory is 
significantly less than when the map structure is 
maintained exclusively in working memory (Figure 6). 
However, during internal searches, room structures are 
retrieved, temporarily boosting the number of elements in 
working memory. 
 
Figure 7 shows that the average cycle time is higher when 
using semantic memory, which includes additional costs 
for storing and retrieving items from semantic memory, as 
well as removing structures from working memory. 
However, Figure 8 shows that the maximum 
msec./processing cycle when structures are stored in 
semantic memory is less than that of working memory. 
The range for working memory is broader and higher; 
however, there is a slight upward trend with semantic 
memory. Using semantic memory eliminates some 

expensive choices made when all objects are represented 
in working memory, which leads to a lower maximum. 
However, it adds the costs for retrievals and removals 
from working memory, which leads to the higher average. 
One reason for that the working memory agent is fast on 
average is that the map is a stable structure throughout the 
task. The Rete matcher only does work when there are 
changes to working memory, which minimizes the costs 
of maintaining it in working memory.  

Figure 6: Average size of working memory using 
semantic vs. working memory in the complex agent. 

Figure 7: Average cycle time using semantic memory vs. 
working memory in the complex agent.  

Figure 8: Maximum cycle time using semantic memory 
vs. working memory in the complex agent.  
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6. Episodic Memory 
Episodic   memory   holds   a   history   of   the   agent’s  
experiences and provides the complete context of an 
experience. In contrast, semantic memory contains 
specific facts, independent of context (unless the context 
is  specifically  included  in  the  fact,  such  as  “the  Watergate 
break-in occurred on June 17,  1972”).   
 
In  Soar,   an  episode   is  a   “snapshot”  of  working  memory.  
An agent can retrieve an episode by creating a cue, but in 
contrast to semantic memory, the cue can include multiple 
objects, and in the extreme can consist of all of working 
memory. The retrieval is based on finding the most recent 
episode   that   “best”   matches   the   cue,   and   Soar   uses   a  
variety of techniques to minimize the time to find the best 
match (Derbinsky & Laird, 2009).  
 
Although it is possible to record episodes on every 
processing cycle, we have found that with this and other 
tasks, it is sufficient to record episodes only when the 
agent takes an external action. Especially in this task, 
where the agent is usually just moving forward, most 
situations are not distinctive nor worth remembering. By 
restricting it to record when there is an action, the agent 
records an episode about every 400 msec., which results 
in the agent storing over 9,000 episodes. In addition, 
episodes do not include cues or retrievals from semantic 
and episodic memory in episodes, nor structures created 
in the look-ahead searches. In this experiment, the 
episodes include all map and block locations that are in 
working memory, and other internally created structures, 
but not raw perceptual structures. 
 
In this task, retrievals from episodic memory provide the 
location of a previously seen block that the agent needs to 
pick up. To retrieve a block from memory, the agent 
creates a query with a description of the object, such as a 
“green   square block,”   and   specifies   that it not be one of 
the objects already in the storage room. The task is 
organized such that the agent picks up blocks in the 
reverse order from how they were originally experienced. 
Thus, we expect the cost of using episodic memory to 
increase during the task because not only do more and 
more episodes need to be searched, but more and more 
episodes must be skipped that contain blocks that have 
already been moved to the storage area. 
 
In these conditions, the size of working memory mirrors 
the results in Figure 6. We expect that by maintaining the 
map in semantic memory, which allows working memory 
to be smaller, the size of episodes should decrease, which 
in turn should speed episodic memory retrievals.  
 

Figure 9 shows the average time per processing cycle. 
The results from the earlier sections without episodic 
memory are included for comparison and they are the 
lower two data sets. The top two data sets show episodic 
memory when the map is in working memory, and above 
that, when it is semantic memory. We see that there is 
overhead to using episodic memory, and counter to our 
expectations, on average, using it with semantic memory 
is more costly than with working memory.  

Figure 10 shows the maximum cycle times and expands 
the y axis from previous figures to 50 msec. This shows 
that using episodic memory comes at a significant cost, 
with the maximum cycle time being an order of 
magnitude higher than those in Figure 8.  
 

The high maximum times occur when the agent retrieves 
an episode. Even though these costs are significant, the 
maximum cost is still lower than our target of 50 msec. 
This graph shows that the combination of episodic 
memory and semantic memory has a lower maximum 
cycle time than episodic memory and working memory, 
even though it is worse in the average case. This is 
because when the complete map is maintained in working 
memory, every episode contains the complete map, so 
reconstruction is more expensive.  

Figure 9: Average cycle time with episodic memory. 

Figure 10: Maximum cycle time with episodic memory.  
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Finally Figure 11 shows the amount of memory required 
for the two conditions with episodic memory, which is 
surprisingly small. Our original expectation was that 
using semantic memory would decrease the amount of 
storage required because its episodes are smaller; 
however, episodic memory is optimized so that new 
structures are only stored when there are changes to 
working memory. When the map is held in working 
memory, no additional storage is required for the existing 
structures of the map in new episodes, only for the 
changes. In contrast, when the map is stored in semantic 
memory, subsets of the map are removed from working 
memory and then later retrieved, which requires 
additional storage to record those changes.  

7. Discussion 
One purpose of this research was to examine the tradeoffs 
between the different memory systems, especially in 
terms of the computational cost of using in a task with 
real-time constraints. For the experiments we have run, 
keeping all of structures in working memory works 
surprisingly well. We expected that as the size of working 
memory grew, the cost of matching rules would become 
prohibitively expensive.  
 
We also discovered that semantic memory is efficient for 
storing the number of structures we need in this task, and 
scales well. There is a performance cost to using it, in 
terms of average processing time per cycle, but it 
performs well in terms of maximum processing cost. This 
bodes well for using semantic memory in the future.  
 
There are additional costs associated with using episodic 
memory, but in this experiment they do not exceed our 
threshold of 50 msec. The results of episodic memory also 
show that in our implementation there are significant 
costs for large working memories during reconstruction of 
episodes. Ironically, maintaining a smaller working 

memory requires more storage for episodic memory 
because of the increase in the changes to working 
memory.  
 
Another of the purposes of this research is to evaluate the 
memory systems in a cognitive architecture on a more 
realistic task than has been done in the past. One 
conclusion of this work is that the memory systems we 
have developed in Soar are sufficient to support real-time 
behavior for this length of task. On average, Soar is 
thousands of times faster than it needs to be to achieve 
real-time performance, and even in the worst cases, it is 
fast enough. However, this task lasted for one hour, over a 
relatively limited map, so the question remains as to how 
these memory systems scale to longer times and larger 
memory structures.  
 
In previous research (Laird & Derbinsky, 2009), we had 
attempted to predict what would be the requirements for 
an agent that learned using episodic memory for a year. 
Here we build on that analysis, but use our experience 
with this task to refine our estimates. We observe that for 
this task the number of episodes that need to be stored is 
modest (9,000 over one hour), and the size of each 
episode is relatively small (as evidence by the total 
memory requirements in Figure 11). Both of these 
quantities are much smaller than our original estimates. 
 
Extrapolating from Figure 11, where in the worst case 
2Mbytes are required per hour, we predict needing 
48Mbytes/day so that we can expect to run for ~2,000 
days before exceeding 96 Gbytes. These estimates are 
dependent on the details of our task, and assume linear 
growth, but provide a ballpark as to what is practical with 
current algorithms and computer systems.  
 
The time to use semantic and episodic memory is more 
difficult to evaluate. The time to access semantic memory 
appears stable; however, this task does not stress semantic 
memory compared to previous research with WordNet. In 
this task there was a maximum of 1,000 objects stored in 
semantic memory compared with 800,000 in WordNet, 
and in this task, the structures are built up by experience 
as opposed to loaded from a database, so that the 
incremental additions to semantic memory in a typical 
task might also be small. An open question is whether this 
is the normal use of semantic memory or whether other 
applications require storing significantly more data. 
 
Our results for episodic memory suggest that the time to 
retrieve items from episodic memory will exceed 50 
msec. after a few hours, although the exact trends are hard 
to predict, and this task is designed to stress episodic 
memory retrievals by forcing the agent continually 
retrieve earlier and earlier episodes from memory. 

Figure 11: Memory requirements with episodic memory.  

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600

 M
e

m
o

ry
 in

 M
b

yt
e

s 

Elapsed Time in Seconds 

epmem with semantic memory

epmem with working memory

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

39



 
There are two approaches to deal with the cost of 
searching episodic memory. The first is to examine 
alternative algorithms and data structures for episodic 
memory. That is part of our ongoing research. A second 
approach is to decouple the processing of semantic and 
episodic memories from the main processing cycle so that 
they run asynchronously in separate processing threads 
and cores. This gives two advantages. First, it increases 
parallelism, but second, the processing for accessing the 
memory no longer directly impacts the reactivity of the 
system. If we look at humans, access to both semantic and 
episodic memory occurs in parallel with procedural 
reasoning and at time scales on the order of 500 msec. 
This change would possibly extend the practicality of 
using episodic memory to a day for this task.  
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