
Performance Evaluation of Declarative Memory Systems in Soar

John E. Laird, Nate Derbinsky, Jonathan Voigt
University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121
laird@umich.edu, nlderbin@umich.edu, voigtjr@umich.edu

Keywords:

performance evaluation, memory and learning, cognitive architecture

ABSTRACT: A rarely studied issue with using persistent computational models is whether the underlying
computational mechanisms scale as knowledge is accumulated through learning. In this paper we evaluate the
declarative memories of Soar: working memory, semantic memory, and episodic memory, using a detailed simulation of
a mobile robot running for one hour of real-time. Our results indicate that our implementation is sufficient for tasks of
this length. Moreover our system executes orders of magnitudes faster than real-time, with relatively modest storage
requirements. We also project the computational resources required for extended operations.

1. Introduction
There are few computational challenges to model
behavior over short time spans when there is minimal
prior knowledge or when there is little to no accumulation
of knowledge or experience. The challenges arise when
we attempt to model behavior over long time spans where
an agent builds up internal structures based on its
experience. As these structures accumulate, the cost of
adding and accessing that knowledge can grow beyond
available computational resources (Derbinsky, Laird, &
Smith, 2010; Douglass, Ball, & Rogers, 2009). With
efficient models, we can test and evaluate them faster,
using cheaper systems, and use them in real-time tasks.

The emphasis of our research is on tasks that require
human-level reasoning, memory, and learning. We are
less concerned with the detailed modeling of human
behavior, where the goal is to match human reaction times
and error rates. Instead, we are interested in creating
models that perform complex tasks, using and acquiring
large stores of knowledge across extended time spans,
often requiring significant internal processing and
planning. TacAir-Soar (Jones et al., 1999) and RWA-Soar
(Hill et al., 1997), two systems that modeled U.S. pilot
tactical behavior in fixed wing and rotary wing vehicles,
have many of these qualities, although they did only
limited planning and did not learn from experience.

Over the last five years, we have extended the Soar
cognitive architecture with semantic and episodic memory
(Laird, 2008). In previous work, we evaluated the
performance of those memories, but our evaluations had
short comings: either they used artificial tasks (Nuxoll &
Laird, 2007), or they focused on using pre-loaded
knowledge and not on knowledge that accumulates

through experience (Derbinsky & Laird, 2009; Derbinsky
et al., 2010). Evaluations of other declarative memories in
cognitive architectures have also focused on preloaded
structures (Douglass et al., 2009; Douglass & Myers,
2010), whereas evaluations of episodic memory have
been restricted to small numbers of preloaded episodes (as
in research on case-based reasoning) or small numbers
(~250) of episodes (Tecuci & Porter, 2007).

To fill this void, in this paper we evaluate performance
within a simulation of a real-world task: a mobile robot
exploring, navigating, and moving objects in a small
building. In this task, the agent’s declarative memories
build up incrementally over an hour of real-time
execution, and the agent’s perception of the environment
is based on detailed models of real-world sensory data.
One goal is to discover the requirements for semantic and
episodic memory in such a task and whether our
implementations are sufficient to support real-time
behavior over long time scales. A second goal is to
discover the relative costs and benefits of the different
memory systems for real-world tasks. One justification
for adding semantic memory to Soar was the concern that
maintaining large number of elements in working
memory would significantly degrade performance,
independent of its cognitive implausibility (Derbinsky &
Laird, 2010). A third goal is to discover interactions
between semantic and episodic memory. Soar provides a
unique opportunity to pursue these goals.

2. The Soar Cognitive Architecture
Figure 1 shows the structure of Soar. Perception delivers
symbolic structures to working memory, which is a
symbolic graph. All the long-term memories retrieve
information based on the contents of working memory
and add, delete, or modify working memory structures.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

33

The knowledge in procedural memory is encoded as rules,
which match and fire in parallel to create working
memory structures as well as preferences for selecting
operators. Operators are the locus of decision making and
include both primitive actions, such as moving or turning
a robot, and abstract actions such as find-a-block, go-to-
the-next-room, or go-to-the-storage-room. The decision
procedure analyzes the preferences and selects the current
operator by adding a structure to working memory.

Abstract operators are dynamically decomposed into
simpler operators until a primitive operator is selected.
Once a primitive operator is selected, rules match and
apply the operator’s actions. For internal operators, such
as building up an internal map, changes are made to
working memory. For external operators, such as moving
the robot, commands are added to the output buffer in
working memory, and are sent to the motor system.
Retrievals from other long-term memories are initiated by
creating cues in those memories’ buffers.

The basic cycle is to process input, fire rules that match,
select an operator, fire rules to apply the operator, and
then process output commands and retrievals from long-
term memory. The time to execute this processing cycle
determines reactivity. Based on our experience with
cognitive modeling, human behavior models, and robotic
systems, 50 msec. is sufficient for real-time reactivity. As
evident in Figure 1, Soar has additional memories and
processing modules; however, they are not evaluated in
this paper, and are not discussed further.

3. Mobile Robot Domain
Soar has been used to control both real (Laird &
Rosenbloom, 1990; Laird et al., 1991) and simulated
vehicles (Hill et al., 1997; Jones et al., 1999). For this
evaluation, we use a system where Soar1 controls a small

1 Experiments used Soar 9.3.1, which is available with the

simulation environment through sitemaker.umich.edu/soar.

mobile robot (Figure 2; Laird, 2009). Our evaluation uses
a simulation instead of the real robot because of the
difficulties in running experiments in the large physical
spaces required. Moreover, the simulated robot can run
unattended on multiple computers at once. When Soar
controls the real robot, it runs on a laptop perched on the
robot as shown in Figure 2. The simulation is quite
accurate and the Soar rules (and architecture) used in the
simulation are exactly the same as the rules used to
control the real robot.

The robot can move forward and backward, and turn in
place. It has a laser-range finder mounted in the front that
gives distances to 180 points throughout 180 degrees. Our
software condenses those points to 5 regions that are
sufficient for it to navigate and avoid obstacles. The robot
can sense its own location based on odometry, and it can
also sense the room it is in, the location of doors and
walls, and different types of objects. These additional
sensors are simulated, and when controlling the real robot,
it uses a synthesis of real and simulated sensor data.
During a run (both real and simulated), there are
approximately 150 sensory data elements, with
approximately 20 values changing each cycle. The
changes can peak at 260 per cycle when the agent moves
from room to room because all the data about the current
room, walls, and doorways change at once.

Throughout the paper, we refer to the robot, Soar, and
rules as an agent. We evaluate two agents that differ in
their rules. The first is the “simple agent,” which serves as
a knowledge-lean baseline for comparison. This agent
explores randomly, moving from room to room, without
maintaining any persistent. It consists of 22 rules.

The second, “complex agent” can perform multiple tasks,
including cleaning rooms and patrolling. We focus on
room cleaning where it picks up and moves specific types
of blocks (such as square green blocks) to a storage room.
The complex agent dynamically constructs a map of the
rooms, doorways, and their spatial and topological layout,
as well as the locations of all blocks as it encounters them

+
Activati

on

Figure 1: Structure of Soar

Semantic

Visual LT Memory

Body

Symbolic Long-Term Memories
Procedural

Symbolic Working Memory D
ecision

Procedure

Chunking

Episodic

A
pp

ra
isa

l
D

et
ec

to
r

Reinforcement
Learning

Perception Action Mental Imagery

Perceptual STM

Semantic
Learning

Episodic
Learning

Figure 2: Splinterbot mobile robot.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

34

during its explorations. Each room, block, wall, and
doorway is represented by 6-9 data elements in the
agent’s memories. The agent initially has no map
information except for the identity of the storage room
(but not its location).

When attempting to travel to a distant room, such as when
dropping off a block at the storage room, the agent
internally simulates moving to neighboring rooms in its
map, searching for a path to the storage room. This
“simulation” does not use the external simulator, but the
agent’s map knowledge. The search is a combination of
progressive deepening (Newell & Simon, 1972) and A*
search (Hart, Nilsson, & Raphael, 1968). The agent also
plans when it needs to return to a previously seen block,
or when it attempts to move to a room it has detected but
not visited. The internal search is performed within the
agent, using rules, spread across multiple cycles, made
possible by Soar’s support for a Universal Weak Method
(Laird & Newell, 1983).

The complex agent has 562 rules and is parameterized so
that by modifying data elements in working memory, it
performs all the variations in behavior described in this
paper, including using either working memory or
semantic memory to store map information, and using
either working memory, semantic memory, or episodic
memory to store block location information.

The experiments are performed using a map with 25
rooms connected via 24 doorways in a straight line from
north to south. This map eliminates most variations in the
agent’s behavior that would arise from random decisions
in a less structured map. There are a total of 44 blocks
spread across the 25 rooms, 23 of which satisfy the
agent’s criteria for blocks it wants to move to the storage
room. These blocks are spread across the rooms so that
there is at most one block per room. The agent starts at
the north end and the storage room is in the southern-most
room. Although the rooms are in a straight line, the agent
must plan after it picks up a block to determine whether to
go north or south to get to the storage room.

All experiments are run for one hour of elapsed real-time,
during which the agent completes approximately 1/3 of
the task. During 1 hour, our agents execute ~25,000,000
processing cycles. The data is aggregated every 10
seconds, which is ~70,000 processing cycles. We focus on
the following performance metrics.
 Average working memory size. Although Soar’s rule

matcher is relatively immune to growth effects from
the number of rules, it is not immune to growth in the
number of working memory elements tested by rules.

 Average msec./processing cycle. This indicates how
much time is required for a processing cycle. For
these tasks, we expect the average to be low because
usually the agent is doing minimal processing as it
moves in a straight line toward its next destination
(such as a doorway or a block).

 Maximum msec./processing cycle. This indicates the
“surge” in computational requirements, which can be
orders of magnitude higher than the average. The
value of this metric determines real-time reactivity.
Our goal is to be below 50 msec.

 Total long-term memory size. This measures how
much computer memory is required to hold the
structures in semantic and episodic memory. To
maintain efficient access, Soar’s memories are
maintained in the computer’s main memory (RAM).
96 GB is a reasonable limit for current workstations.

The data are averaged over 5 runs, except for the
maximum msec./processing cycle. For those data, we use
a representative run. Because Soar waits for the
simulation environment at the end of each cycle, Soar
uses only a fraction of the available processing time
(~7.5%). All experiments were run on an Intel i7
860@2.8Ghz, with 8 GB of memory. In the following
sections, we evaluate working memory, semantic
memory, and then episodic memory.

4. Working Memory
As mentioned earlier, working memory in Soar is a graph,
with each edge of the graph being a working memory
element that consists of an identifier, an attribute, and a
value. Each element can be added or removed
independent of other elements. This is in contrast to ACT-
R (Anderson, 2007), which bundles structures together as
chunks, which are added, modified, or removed as a
single unit. However, we will often refer to all of the
working memory elements that share a common identifier
as an object, which thus corresponds roughly to a chunk,
with the object identifier corresponding to a chunk id.
Objects in Soar refer to entities in the world (rooms, doors
blocks), internal concepts, words, and so on. There is no
bound on the number of elements in working memory,
and working memory grows and shrinks over the lifetime
of an agent as elements are added and removed.

Figure 3 shows the maximum number of working
memory elements (WMEs) for the simple and complex
agents. As expected, working memory in the simple agent
does not grow. The complex agent builds up working
memory as it explores, but once it visits all rooms (at
~770 seconds) memory levels off. As evident in the
figure, ~ 3,000 elements are needed to represent the map
and blocks.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

35

Given the large working memory in the complex agent,
our expectation is that we will see a significant
degradation in performance in the cycle time of the agent
as the memory grows. This is because the underlying
algorithm for matching rules in Soar, called Rete (Forgy,
1982), is designed to scale well with the number of rules,
but not with the size of working memory. As more
working memory elements are added, it is often the case
that there are more ways a rule can match, and in some
cases, that can lead to more than linear growth in the
computational processing required to determine which
rules match. In the specific task performed by our agents,
the number of blocks to be picked up leads to such an
increase when the agent must decide which block to pick
up next after depositing a block in the storage room.

Figure 4 shows the average CPU time in msec. per
processing cycle. Both agents maintain consistent
performance throughout the task, showing little, to no
degradation over time, with the complex agent being
slower on average. Moreover, the average time (<.015
msec./cycle) is orders of magnitude faster than required
for real-time performance (50 msec.).

To explore the performance of the complex agent in more
detail, in Figure 5 we examine the maximum time spent in
a processing cycle. The simple agent has a low, stable
maximum msec./processing cycle, while the complex
agent has significantly more variation. That variation
initially increases as the map is built up (0-770 seconds).
From that point on, the highest points arise when the
agent is choosing which block to pick up next.

The high values are the exception, and even with them,
the average cycle time is hundreds of times less at ~.02
msec. Moreover, the variation is minimal when taken
within the context of achieving a cycle time of less than
50 msec. Thus, an important result is that maintaining all
structures in working memory is adequate for this task.

5. Semantic Memory
In Soar, semantic memory holds long-term, persistent
declarative structures that generally correspond to facts
about objects or concepts. For this task, that includes the
map and the location of the blocks. In Soar, structures in
semantic memory are deliberately stored from working
memory. Semantic memory can also be pre-loaded with
structures from external knowledge bases such as
WordNet (Derbinsky et al., 2010). To speed retrievals,
our implementation uses an inverted index (similar to
what is done in search engines), combined with statistical
query optimizations, using SQLite as a backend.

To retrieve structures from semantic memory, a Soar
agent creates one of two types of cues in a working
memory. In cue-based retrievals, the cue consists of
multiple working memory elements that provide a partial
description of an object. The semantic memory system
finds the object in semantic memory that best matches the
cue. The search is biased by recency, and there is no
“spreading” of activation as is sometimes used in ACT-R.
In identifier retrievals, the object identifier is already in
working memory, but its entire substructure is not. For
example, when room structures are retrieved, they include

Figure 3: Average size of working memory in the
simple vs. complex agents.

Figure 4: Average processing time per cycle in msec. in
the simple vs. complex agents.

Figure 5: Maximum time per cycle in msec. in the
simple vs. complex agents.

0

0.02

0.04

0.06

0.08

0.1

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 C
yc

le
 T

im
e

 in
 M

se
c.

Elapsed Time in Seconds

complex agent

simple agent

0

500

1000

1500

2000

2500

3000

3500

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 N
u

m
b

e
r

o
f

W
M

Es

Elapsed Time in Seconds

complex agent

simple agent

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600M
ax

im
u

m
 C

yc
le

 T
im

e
 in

 M
se

c.

Elapsed Time in Seconds

complex agent

simplex agent

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

36

the identifier of each doorway. Using this type of
retrieval, the complete representation of doorway objects
can be brought into working memory.

For these experiments, the map of the rooms is
incrementally added to semantic memory as the agent
encounters a new room or block. To minimize working
memory, the agent removes representations of distant
rooms from working memory. One complexity is that
when the agent is performing an internal look-ahead
search, it must retrieve room structures from semantic
memory as it “imagines” moving through those rooms.

The use of semantic memory to hold rooms and objects
can change some aspects of agent behavior. One example
is when the agent has just dropped off a block in the
storage room and needs to decide which block it should
pick up next. When the blocks are all in working memory,
a rule can match all blocks and create a pickup operator
for each one, and the agent can compute the distance to
each block and use that information in choosing an
operator. When using semantic memory, the agent cues a
retrieval using the characteristics of the object, such as its
color and shape, but cannot use distances to the agent,
which are not maintained in semantic memory because
they are constantly changing. Instead, the agent retrieves
the most recent object it has seen.

Figures 6-8 compare an agent that stores the map in
working memory (this is the same agent as the complex
agent in Figures 3-5) with an agent that stores the map in
semantic memory. The total number of objects stored in a
run is ~1000, with ~700 cue-based retrievals and ~700
identifier retrievals. The structures in semantic memory
take ~.6 MB.

When the map structure is maintained in semantic
memory, the average size of working memory is
significantly less than when the map structure is
maintained exclusively in working memory (Figure 6).
However, during internal searches, room structures are
retrieved, temporarily boosting the number of elements in
working memory.

Figure 7 shows that the average cycle time is higher when
using semantic memory, which includes additional costs
for storing and retrieving items from semantic memory, as
well as removing structures from working memory.
However, Figure 8 shows that the maximum
msec./processing cycle when structures are stored in
semantic memory is less than that of working memory.
The range for working memory is broader and higher;
however, there is a slight upward trend with semantic
memory. Using semantic memory eliminates some

expensive choices made when all objects are represented
in working memory, which leads to a lower maximum.
However, it adds the costs for retrievals and removals
from working memory, which leads to the higher average.
One reason for that the working memory agent is fast on
average is that the map is a stable structure throughout the
task. The Rete matcher only does work when there are
changes to working memory, which minimizes the costs
of maintaining it in working memory.

Figure 6: Average size of working memory using
semantic vs. working memory in the complex agent.

Figure 7: Average cycle time using semantic memory vs.
working memory in the complex agent.

Figure 8: Maximum cycle time using semantic memory
vs. working memory in the complex agent.

0

500

1000

1500

2000

2500

3000

3500

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 N
u

m
b

e
r

o
f

W
M

Es

Elapsed Time in Seconds

map in working memory

map in semantic memory

0

0.02

0.04

0.06

0.08

0.1

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 C
yc

le
 T

im
e

 in
 M

se
c.

Elapsed Time in Seconds

map in working memory

map in semantic memory

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600M
ax

im
u

m
 C

yc
le

 T
im

e
 in

 M
se

c.

Elapsed Time in Seconds

map in working memory

map in semantic memory

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

37

6. Episodic Memory
Episodic memory holds a history of the agent’s
experiences and provides the complete context of an
experience. In contrast, semantic memory contains
specific facts, independent of context (unless the context
is specifically included in the fact, such as “the Watergate
break-in occurred on June 17, 1972”).

In Soar, an episode is a “snapshot” of working memory.
An agent can retrieve an episode by creating a cue, but in
contrast to semantic memory, the cue can include multiple
objects, and in the extreme can consist of all of working
memory. The retrieval is based on finding the most recent
episode that “best” matches the cue, and Soar uses a
variety of techniques to minimize the time to find the best
match (Derbinsky & Laird, 2009).

Although it is possible to record episodes on every
processing cycle, we have found that with this and other
tasks, it is sufficient to record episodes only when the
agent takes an external action. Especially in this task,
where the agent is usually just moving forward, most
situations are not distinctive nor worth remembering. By
restricting it to record when there is an action, the agent
records an episode about every 400 msec., which results
in the agent storing over 9,000 episodes. In addition,
episodes do not include cues or retrievals from semantic
and episodic memory in episodes, nor structures created
in the look-ahead searches. In this experiment, the
episodes include all map and block locations that are in
working memory, and other internally created structures,
but not raw perceptual structures.

In this task, retrievals from episodic memory provide the
location of a previously seen block that the agent needs to
pick up. To retrieve a block from memory, the agent
creates a query with a description of the object, such as a
“green square block,” and specifies that it not be one of
the objects already in the storage room. The task is
organized such that the agent picks up blocks in the
reverse order from how they were originally experienced.
Thus, we expect the cost of using episodic memory to
increase during the task because not only do more and
more episodes need to be searched, but more and more
episodes must be skipped that contain blocks that have
already been moved to the storage area.

In these conditions, the size of working memory mirrors
the results in Figure 6. We expect that by maintaining the
map in semantic memory, which allows working memory
to be smaller, the size of episodes should decrease, which
in turn should speed episodic memory retrievals.

Figure 9 shows the average time per processing cycle.
The results from the earlier sections without episodic
memory are included for comparison and they are the
lower two data sets. The top two data sets show episodic
memory when the map is in working memory, and above
that, when it is semantic memory. We see that there is
overhead to using episodic memory, and counter to our
expectations, on average, using it with semantic memory
is more costly than with working memory.

Figure 10 shows the maximum cycle times and expands
the y axis from previous figures to 50 msec. This shows
that using episodic memory comes at a significant cost,
with the maximum cycle time being an order of
magnitude higher than those in Figure 8.

The high maximum times occur when the agent retrieves
an episode. Even though these costs are significant, the
maximum cost is still lower than our target of 50 msec.
This graph shows that the combination of episodic
memory and semantic memory has a lower maximum
cycle time than episodic memory and working memory,
even though it is worse in the average case. This is
because when the complete map is maintained in working
memory, every episode contains the complete map, so
reconstruction is more expensive.

Figure 9: Average cycle time with episodic memory.

Figure 10: Maximum cycle time with episodic memory.

0

10

20

30

40

50

0 600 1200 1800 2400 3000 3600M
ax

im
u

m
 C

yc
le

 T
im

e
 in

 M
se

c.

Elapsed Time in Seconds

epmem with working memory
epmem with semantic memory

0

0.02

0.04

0.06

0.08

0.1

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 C
yc

le
 T

im
e

 in
 M

se
c.

Elapsed Time in Seconds

epmem with semantic memory
epmem with working memory
map in semantic memory
map in working memory

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

38

Finally Figure 11 shows the amount of memory required
for the two conditions with episodic memory, which is
surprisingly small. Our original expectation was that
using semantic memory would decrease the amount of
storage required because its episodes are smaller;
however, episodic memory is optimized so that new
structures are only stored when there are changes to
working memory. When the map is held in working
memory, no additional storage is required for the existing
structures of the map in new episodes, only for the
changes. In contrast, when the map is stored in semantic
memory, subsets of the map are removed from working
memory and then later retrieved, which requires
additional storage to record those changes.

7. Discussion
One purpose of this research was to examine the tradeoffs
between the different memory systems, especially in
terms of the computational cost of using in a task with
real-time constraints. For the experiments we have run,
keeping all of structures in working memory works
surprisingly well. We expected that as the size of working
memory grew, the cost of matching rules would become
prohibitively expensive.

We also discovered that semantic memory is efficient for
storing the number of structures we need in this task, and
scales well. There is a performance cost to using it, in
terms of average processing time per cycle, but it
performs well in terms of maximum processing cost. This
bodes well for using semantic memory in the future.

There are additional costs associated with using episodic
memory, but in this experiment they do not exceed our
threshold of 50 msec. The results of episodic memory also
show that in our implementation there are significant
costs for large working memories during reconstruction of
episodes. Ironically, maintaining a smaller working

memory requires more storage for episodic memory
because of the increase in the changes to working
memory.

Another of the purposes of this research is to evaluate the
memory systems in a cognitive architecture on a more
realistic task than has been done in the past. One
conclusion of this work is that the memory systems we
have developed in Soar are sufficient to support real-time
behavior for this length of task. On average, Soar is
thousands of times faster than it needs to be to achieve
real-time performance, and even in the worst cases, it is
fast enough. However, this task lasted for one hour, over a
relatively limited map, so the question remains as to how
these memory systems scale to longer times and larger
memory structures.

In previous research (Laird & Derbinsky, 2009), we had
attempted to predict what would be the requirements for
an agent that learned using episodic memory for a year.
Here we build on that analysis, but use our experience
with this task to refine our estimates. We observe that for
this task the number of episodes that need to be stored is
modest (9,000 over one hour), and the size of each
episode is relatively small (as evidence by the total
memory requirements in Figure 11). Both of these
quantities are much smaller than our original estimates.

Extrapolating from Figure 11, where in the worst case
2Mbytes are required per hour, we predict needing
48Mbytes/day so that we can expect to run for ~2,000
days before exceeding 96 Gbytes. These estimates are
dependent on the details of our task, and assume linear
growth, but provide a ballpark as to what is practical with
current algorithms and computer systems.

The time to use semantic and episodic memory is more
difficult to evaluate. The time to access semantic memory
appears stable; however, this task does not stress semantic
memory compared to previous research with WordNet. In
this task there was a maximum of 1,000 objects stored in
semantic memory compared with 800,000 in WordNet,
and in this task, the structures are built up by experience
as opposed to loaded from a database, so that the
incremental additions to semantic memory in a typical
task might also be small. An open question is whether this
is the normal use of semantic memory or whether other
applications require storing significantly more data.

Our results for episodic memory suggest that the time to
retrieve items from episodic memory will exceed 50
msec. after a few hours, although the exact trends are hard
to predict, and this task is designed to stress episodic
memory retrievals by forcing the agent continually
retrieve earlier and earlier episodes from memory.

Figure 11: Memory requirements with episodic memory.

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600

 M
e

m
o

ry
 in

 M
b

yt
e

s

Elapsed Time in Seconds

epmem with semantic memory

epmem with working memory

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

39

There are two approaches to deal with the cost of
searching episodic memory. The first is to examine
alternative algorithms and data structures for episodic
memory. That is part of our ongoing research. A second
approach is to decouple the processing of semantic and
episodic memories from the main processing cycle so that
they run asynchronously in separate processing threads
and cores. This gives two advantages. First, it increases
parallelism, but second, the processing for accessing the
memory no longer directly impacts the reactivity of the
system. If we look at humans, access to both semantic and
episodic memory occurs in parallel with procedural
reasoning and at time scales on the order of 500 msec.
This change would possibly extend the practicality of
using episodic memory to a day for this task.

8. Acknowledgments
This research was supported in part by the Ground
Robotics Reliability Center (GRRC) at the University of
Michigan, with funding from government contract DoD-
DoA W56H2V-04-2-0001 through the US Army Tank
Automotive Research, Development, and Engineering
Center and the Office of Naval Research under grant
number N00014-08-1-0099.
UNCLASSIFIED: Dist. A. Approved for public release.

9. References
Anderson, J. R. (2007). How Can the Human Mind Occur

in the Physical Universe? Oxford University Press.
Derbinsky, N., and Laird, J. E. (2009). Efficiently

Implementing Episodic Memory, Proceedings of the
International Conference on Case-based Reasoning.

Derbinsky, N., and Laird, J. E. (2010). Extending Soar
with Dissociated Symbolic Memories. Proceedings of
the Symposium on Human Memory for Artificial
Agents, 36th AISB.

Derbinsky, N., Laird, J. E., and Smith, B. (2010).
Towards Efficiently Supporting Large Symbolic
Declarative Memories, Proceedings of the 10th
International Conference on Cognitive Modeling.

Douglass, S. A., Ball, J., and Rodgers, S. (2009). Large
Declarative Memories in ACT-R. Proceedings of the
9th International Conference on Cognitive Modeling.

Douglass, S. A., Myers, C. W. (2010). Concurrent
Knowledge Activation Calculation in Large Declarative
Memories. Proceedings of the 10th International
Conference on Cognitive Modeling.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence 19 (1) 17-37.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Transactions on Systems
Science and Cybernetics SSC4 4 (2): 100–107.

Hill, R. W., Chen, J., Gratch, J., Rosenbloom, P., and
Tambe, M. (1997). Intelligent Agents for the Synthetic
Battlefield: A Company of Rotary Wing Aircraft.
Proceedings of AAAI 1997, 1006-1012.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., and Koss, F. V. (1999). Automated
Intelligent Agents for Combat Flight Simulation. AI
Magazine, 20(1), 27-42.

Laird, J. E. (2008). Extending the Soar Cognitive
Architecture. Proceedings of the First Conference on
Artificial General Intelligence.

Laird, J. E., Derbinsky, N. (2009). A Year of Episodic
Memory. Workshop on Grand Challenges for
Reasoning from Experiences, IJCAI-2009.

Laird, J. E., and Newell, A. (1983). A Universal Weak
Method: Summary of Results. Proceedings of IJCAI.

Laird, J. E., and Rosenbloom, P. S. (1990). Integrating
Execution, Planning, and Learning in Soar for External
Environments. Proceedings of AAAI 1990. 1022-1029.

Nuxoll, A. M., and Laird, J. E. (2007). Extending
Cognitive Architecture with Episodic Memory.
Proceedings of AAAI 2007.

Tecuci, D., Porter, B. (2007). A Generic Memory Module
for Events. Proceedings of the 20th Florida Artificial
Intelligence Research Society Conference.

Author Biographies

JOHN LAIRD is the John L. Tishman Professor of
Engineering at the University of Michigan. His research
focuses on cognitive architecture, with emphasis on the
Soar architecture. He is a Fellow of AAAI, ACM, and the
Cognitive Science Society.

NATE DERBINSKY is a Ph.D. candidate in Computer
Science and Engineering at the University of Michigan.
His research focuses on functionality and efficiency for
long-term declarative memories in cognitive architectures.

JONATHAN VOIGT is a research programmer at the
University of Michigan. He supports the development of
the Soar architecture and associated tools and
environments, including robot simulators and interfaces.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-008

40

	Brims Proceedings TOC- Rev20110305
	11-BRIMS-001
	11-BRIMS-002
	11-BRIMS-003
	11-BRIMS-004
	11-BRIMS-005
	11-BRIMS-006
	11-BRIMS-007
	1 Introduction
	2 AgentWorks Modeling Paradigm
	2.1 Graphical Development Environment
	2.2 Run-Time Environment

	3 Applications
	3.1 Cultural Training
	3.2 Air Traffic Control Training

	4 Discussion
	5 Acknowledgments
	6 References

	11-BRIMS-008
	11-BRIMS-009
	11-BRIMS-010
	11-BRIMS-011
	11-BRIMS-012
	11-BRIMS-013
	11-BRIMS-014
	11-BRIMS-015
	11-BRIMS-016
	11-BRIMS-017
	11-BRIMS-018
	11-BRIMS-019
	11-BRIMS-020
	11-BRIMS-021
	11-BRIMS-022
	11-BRIMS-023
	11-BRIMS-024
	11-BRIMS-025
	11-BRIMS-026
	11-BRIMS-027
	11-BRIMS-028
	11-BRIMS-029
	11-BRIMS-030
	11-BRIMS-031
	11-BRIMS-032
	11-BRIMS-033
	11-BRIMS-034
	11-BRIMS-035
	11-BRIMS-036
	11-BRIMS-037
	11-BRIMS-038
	11-BRIMS-039
	Introduction
	Presentation Abstracts
	References

	11-BRIMS-040
	11-BRIMS-041
	11-BRIMS-042
	11-BRIMS-043
	11-BRIMS-044
	11-BRIMS-045
	11-BRIMS-046
	11-BRIMS-047
	11-BRIMS-050
	11-BRIMS-051
	Instance-based Learning Tool: Making Instance-based Learning Theory Usable, Transparent, and Understandable
	Introduction
	Objectives and Scope
	Methodology
	Target Audience
	Further Materials
	Schedule of Events
	Instructors’ biographies
	References

	11-BRIMS-052
	• TacAir-Soar: The Next Generation (11-BRIMS-001)John Laird, University of Michigan

