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Abstract 
Navy ships are complex enterprises comprised of multiple organizations that must interact 
smoothly and interface externally without threats to efficiency and combat-readiness. As logistical 
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challenges increase and technology pushes response times, it is critical to introduce state of the 
art computational methods for analyzing the interlocked systems and training for different events. 
To address these challenges in this context, we introduce a framework called LAILOW: learn, 
optimize, and wargame. LAILOW exploits data arising from multiple sources in a complex 
enterprise by offering data mining, machine learning, and predictive algorithms that can be used 
for analysis and discovery of patterns, rules, and anomalies. LAILOW’s output can then be used 
to optimize business processes and course of actions. 

We show three use cases of using the of LAILOW framework. We show the whole LAILOW 
framework to search for vulnerability of a major Marine equipment’s maintenance and supply 
system for difficult tests and evolve resilience and novel solutions accordingly. We show using of 
lexical link analysis (LLA) as part of LAILOW to improve the prediction accuracy of probability of 
failure of critical Navy Ship parts, related to C4I systems, for NAVWARSYSCOM’s Predictive Risk 
Sparing Matrix (PRiSM) product. We also show the comparison of LLA prioritizing items in the 
Financially Restricted Work Que (FRWQ) with the baseline calculation.  

Introduction 
Leveraging deep analysis such as LAILOW for the U.S. Navy Ships is motivated by 

current challenges and needs. The Navy Ships conduct their activities based on the concepts of 
operations (CONOPS). For example, Distributed Maritime Operation (DMO) is a CONOP for the 
Navy; Expeditionary Advanced Base Operation (EABO) is a CONOPS for the U.S. Marine 
Corps (USMC). These CONOPS require capabilities, manpower, maintenance, and supply 
among other resources to be carefully analyzed, planned, and executed to complete missions 
successfully. Meanwhile, military sensors have been constantly collecting big data in many 
readiness components to facilitate decision-making and improve courses of actions. All the 
activities require data analytics. Deep analytics for big data and business intelligence including 
machine learning (ML), and artificial intelligence (AI) algorithms such as deep learning 
algorithms (LeCun et al., 2015), and game theory (Brown & Sandholm, 2017; Silver et al., 2017) 
have performed benchmark tasks and demonstrated the superb performance to human. It is 
imperative to adopt these analytics and tools to understand the entire spectrum of the Navy 
Ships related to complex enterprises including capabilities, manpower, maintenance, supply, 
transportation, health services, general engineering, and finance. The paper addresses the 
needs on the Navy and Marine logistics value chain, where there is a need to consider 
uncertainty, disruption, and perturbation that can impact the logistics plans as a whole. For 
example, uncertainty factors related to the environment in wide geographic areas, such as 
weather change, mission change from a peace time to a conflict time, or a sudden event can 
cause a perturbation and disruption for previous logistics and supply plans. Previously high-
impact but low-failure parts may suddenly become in high demand.  

The LAILOW framework focuses on three pillars of deep analytics, that is, machine 
learning, optimization, and wargame as shown in Figure 1. When there are data from various 
sources, data mining, machine learning, and predictive algorithms are often used to analyze 
data and discover patterns, rules, and anomalies that can later be used to optimize business 
processes and course of actions. New requirements have emerged in recent years that 
emphasize greater complexity in uncertainty, unknowns, and unexpected situations for Navy 
Ships. More importantly is the risk of adversarial novelty: adversaries might work on the 
scenarios and situations that Navy Ships might never encounter before or there are no data are 
available for decision-making. These requirements and concerns motivate wargame simulations 
that could generate synthetic data, perform what-if analyses, and explore analyses of 
alternatives (AoAs). The ultimate goal is to enhance total force readiness and project combat 
power across the whole range of military operations and spectrum of conflict at any time.  
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LAILOW Framework 

 
Figure 1. The LAILOW Framework Applied to U.S. Ships 

The technical concept of this paper is to leverage artificial Intelligence (AI) to learn, 
optimize, and wargame (LAILOW) for a complex enterprise, customized to Navy Ships, 
especially to the logistics value chain and readiness of Navy and Marine enterprises as shown 
in Figure 1. The components of LAILOW are as follows: 

• Component 1—Learn: When there is certain amount of data available, LAILOW 
performs data mining, machine learning, and learns predictive, associative, and 
sequential patterns from historical data.  
The motivation for Component 1 is the great value of prediction. Once specific way 

prediction helps is to guide anticipatory preparations. For example, predictive maintenance 
reduces downtime and indicates which spare parts should be proactively prepared. Predictions 
of maintenance-related parameters (e.g., MTBF—mean time between failures, probability of 
failure, probability of demand) enable forecasts of parts’ lifetimes under potential circumstances 
and scenarios. Predications of customer waiting time—the days between a trouble ticket 
opened and closed—reveal potential bottlenecks or ensure accurate customer expectations. 
This general ML capability indirectly helps extend asset product life and reduces total ownership 
costs.  

In our use cases, we apply open source ML and data mining toolkit (i.e., Orange 
software by University of Ljubljana, 1996–2021) to data sets. Orange features a visual 
programming front-end for explorative rapid qualitative data analysis and interactive data 
visualization. It contains supervised ML algorithms of logistic regression, decision trees, naïve 
Bayes, random forest, k-nearest neighbors, and neural networks; and unsupervised ML 
algorithms such as principal component analysis (PCA) and k-means algorithms among others. 
Orange algorithms are wrapped from the python machine learning library scikit-learn 
(Pedregosa et al., 2011).  

We also apply Soar (Laird, 2012; Laird et al., 2012), a cognitive architecture that 
scalably integrates a rule-based AI system and reinforcement learning (RL; Sutton & Barto, 
1998, 2014). Soar-RL has advantages for defense applications over other ML/AI algorithms 
because it is rule-based and explainable, providing reasons for prediction, classification, and 
anomaly detection results. Rules can include existing tactical knowledge and rules of 
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engagement. New rules can also be discovered from big data via online, on-policy, and 
continual learning. Soar has been used in modeling large-scale complex cognitive functions for 
warfighting processes in kill chain applications such as Combat Identification (Zhao et al., 2018) 
and Battle Readiness Engagement Management (BREM) wargame (Zhao et al., 2020)  

The machine learning component also includes unsupervised ML algorithms. We often 
perform clustering, unsupervised neural network, or lexical link analysis (LLA) from the LAILOW 
framework to improve prediction, detect anomalies, and sort/rank important information. LLA is 
an unsupervised ML method and describes the characteristics of a complex system using a list 
of attributes or features, or specific vocabularies or lexical terms. Because the potentially vast 
number of lexical terms from big data, the model can be viewed as a deep model for big data. 
For example, we can describe a system using word pairs or bi-grams as lexical terms extracted 
from text data. LLA automatically discovers word pairs, and displays them as word pair 
networks. This innovative configuration of LLA allows us to use it to discover and rank high-
value information such as attributes and factors that correlate to the measures of performance 
of a complex enterprise from both unstructured and structured data. Bi-grams allow LLA to be 
extended to numerical or categorical data. For example, using structured data, such as 
attributes from maintenance and supply chain databases, we discretize numeric attributes and 
categorize their values to word-like features. The word pair model can further be extended to a 
context-concept-cluster model (Zhao & Zhou, 2014). A context can represent a location, a time 
point, or an object shared across data sources. Figure 2 shows an output of word networks from 
LLA for an unstructured data of a ship corrosion patent. Each node represents a word and each 
link represents how likely (the strength of the link) two words are next to each other as a bi-gram 
phrase. For example, “polystyrene dish” has a strength 242.5. An example of LLA for 
unstructured data is shown in Figure 2. 

 
Figure 2. Examples of LLA from Unstructured Data 

In this paper, we use LLA for the structured data. With the bi-gram representation and 
context-concept-cluster models, LLA can be used as a “market basket analysis,” where items 
appear together in the same context are considered associated or linked. Such association and 
link patterns can be used to improve prediction (Use Case 1 and 2) and rank items (Use Case 
3). 

Causal learning is also important for process improvement and quality control of a 
complex enterprise such as Navy Ships. The common consensus is that data-driven analysis or 
data mining can discover initial statistical correlations and associations from big data. Decision-
makers and engineers often need to validate causes behind any observable effects. This calls a 
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systematic approach of causal machine learning. The key factors for causal learning include the 
three layers of a causal hierarchy—association, intervention, and counterfactuals (Mackenzie & 
Pearl, 2018). A typical causal machine learning needs to select a cause (C) that maximizes the 
counterfactual difference Probability (E|C) – Probability(E|Not C), where the effect E is 
observable data and cause C is actionable and controllable variable. If deep analytics can 
reason and detect the cause for good or bad events (effects), engineers and decision-makers 
can fix the cause, avoid bad events/effects, and achieve desired effects. LLA potentially allows 
such a causality analysis. Causality analysis is related to the counterfactual regret minimization 
(CFR) that becomes important for many ML/AI applications.  

• Component 2—Optimize: Based on the patterns, LAILOW optimizes the measures of 
effectiveness (MOEs) or the measures of performances (MOPs), defined by business 
decision-makers, by searching through all possible courses of actions to improve 
performance. The MOPs can be probability of failure (POF), probability of demand 
(POD), cost, time, and total readiness (e.g., a system uptime). 
After machine learning algorithms in LAILOW discover associations, patterns, and rules, 

optimization algorithms can use them to search for decisions, course of actions, configurations, 
and combinations to optimize predicted MOEs and MOPs. LAILOW draws upon evolutionary 
algorithms for optimization. Evolutionary algorithms are genetic algorithms, which integrate the 
metaphor of genetic reproduction of selection, mutation, and crossover where the objective 
function's derivatives are not easy to compute. 

• Component 3—Wargame: The LAILOW framework can be set up as a wargame with 
two players in order to test the quality or performance capabilities of a complex 
enterprise. One player, “self,” represents the complex enterprise. The “opponent” of 
“self” evaluates the complex enterprise for robustness and resilience under stress, for 
example, when environmental factors, such as mission requirements, weather, 
emergency events, natural disasters, or adversaries, (who may deliberately generate 
disruption and exploit the vulnerability of the self-player), come into consideration or 
suddenly emerge.  
The wargame serves the purpose of improving a real-time and dynamic operational 

environment through adaptative modeling. The opponent generates new operation conditions 
and events that might challenge the whole value chain and readiness measures in an intent to 
either improve the complex enterprise or disrupt the complex enterprise. The self-player adapts 
to optimize the actions and solutions to counter the opponent’s actions/decisions. The whole 
process iterates and escalates due to each player adapting to the other.   

To create a wargame environment, LAILOW uses coevolutionary algorithms (O’Reilly & 
Hemberg, 2018; Popovici et al., 2012). These are related to evolutionary algorithms and genetic 
algorithms (Back, 1996; Goldberg, 1989) and provide search, adaptation, and optimization 
mechanisms for two populations that engage to test and solve problems respectively. 
Coevolutionary algorithms explore domains in which the quality of a candidate solution (e.g., an 
action combination) is determined by its ability to successfully pass some set of tests 
(attackers), for example, solutions (defenders) in a logistics chain need to pass the known 
difficult or adversarial tests (attacks). Competitive coevolutionary algorithms are used to solve 
minmax problems, similar to those encountered by generative adversarial networks (GANs; 
Arora et al., 2017; Goodfellow et al., 2014), where adversarial engagements of opponents can 
be computationally modeled. Competitive coevolutionary algorithms take a population-based 
(parallel) approach to iterative adversarial engagement. In this competitive setting, the test 
(attacker) and solution (defender) strategies can lead to an arms race between the players, both 
adapting or evolving while pursuing conflicting objectives. 
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In summary, Navy Ships including USMC need to constantly perform a type of what-if 
and AoA wargame simulations in order to get ready for the unknown situations and perform in a 
contested environment. There are many challenges for Navy Ships and global materiel 
distribution that often require such wargame simulations. Forward deployed Navy Ships, 
particularly in the high operating tempo (OPTEMPO) areas such as the Seventh and Fifth 
Fleets, have challenges that arise in receiving logistical support when parts failures occur. 
These failures manifest as either a demand on the supply system, a casualty report (CASREP), 
or a request for technical assistance, which can cause a “redline,” or a failure that stops the unit 
from being able to complete the whole mission until the problem can be resolved. Limited 
manpower, funding, storage space, and resources for repair are all in high demand (Stevens & 
Zhao, 2021). A good system needs to be in place to determine the most efficient and effective 
method of stocking, forward staging, or contracting for the materials that have the highest 
likelihood of demand and balance with the potential impact of failure. LAILOW can support 
these system requirements because it exploits algorithms for learning, optimization and 
wargaming.  

Use Case 1: Marine Maintenance and Supply System 
As part of Navy Ships, the USMC maintenance and supply chain is a complex enterprise 

and exemplifies socio-technological infrastructures that require continuous learning, optimizing, 
and wargaming. To show the feasibility of the whole LAILOW framework, we first fuse and 
synthesize seven years of maintenance and supply time series data for a Marine equipment, 
namely, Land Armored Vehicles (LAV), including maintenance, supply, and equipment usage 
from the database Global Combat Support System-Marine Corps (GCSS-MC). We then 
aggregate the data for each maintenance and supply ticket as shown in Figure 3(a). There are 
about 500 aggregated variables representing states and actions for both the self-player and 
opponent when applying LAILOW. The sample data set contains ~11% tickets that have the 
days between deadlined (i.e., the Marine term for “redlined”) and closed date more than 32 days 
(32 days is the mean of the days between the deadlined and closed dates for the data set).  

As shown in Figure 3(b), we first apply Orange’s predictive algorithms to predict the 
target variable “days between deadlined and closed” for each ticket. We add LLA to improve 
predictive models. We also add Soar-RL as another predictive algorithm outside Orange to 
predict the same target variable which result in comparable predictive accuracy. Finally, we 
divide all the variables into two groups: Attackers and Defenders, shown in Figure 3(d), and 
apply the coevolutionary algorithm using the predictive rules generated using Soar-RL. The 
predictive rules are generated for both Attacker variables and Defender variables to predict the 
target variable or fitness function in opposite directions. During the wargame phase, the 
Attacker variables change their values to increase the Attackers’ fitness, or increase the days 
between deadlined and closed; while the Defender variables change their values to increase the 
Defenders’ fitness or decrease the days between deadlined and closed.  
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Figure 3. The LAILOW Framework Applied to the Marine Use Case 

The Soar-RL and coevolutionary algorithms thus systematically simulate and discover 
possible new tests or “vulnerabilities” for a complex system and evolve solutions accordingly. 
For example, the evolved Attacker  “d284e4” in Figure 4(c), which is a specific combination of 
Attacker variables, has an improved fitness -0.204 from where it starts from the database, i.e., -
0.34 for “10fe75,” in Figure 4(a), against the best Defender “b642cf.” Such an attacker can 
potentially present a challenge or vulnerability to the current logistics solution system, because it 
is difficult for the defender to come up with a better solution than “b642cf.” Of course, the 
feasibility of such an Attacker configuration needs to be considered as well. 

 

 
Figure 4. The Evolution Process for Attackers and Defenders. 
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The evolved Attacker “d284e4” in Figure 4(c), which is a specific combination of Attacker 
variables, has an improved fitness -0.204 from where it starts from the database, i.e., -0.34 for 
“10fe75,” in Figure 4(a), against the best Defender “b642cf.” Such an attacker can potentially 
present a challenge or vulnerability to the current logistics solution system, because it is difficult 
for the defender to come up with a better solution than “b642cf.” 

 

 
Figure 5. The Evolution Process for Attackers and Defenders 

Figures 5(a) and 5(b) show the Attackers’ and Defenders’ mean and best fitness values 
changing for three generations in the coevolutionary algorithms, respectively. The trends 
validate the results and analyses that the self-player or Defender, representing the logistics 
solutions, gets worse on average while the opponent or Attacker, representing logistics tests, 
gets better on average in the coevolution simulation.   

In summary, we show a use case of LAILOW which is capable of evolving, searching, 
simulating, and performing what-if analyses that reveal the new tests and solutions, possible 
vulnerability of the logistics system. The simulation can also suggest novel and more powerful 
solution (defender) configurations to handle new tests (attacker) that are never seen before.  
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Use Case 2: Predictive Risk Sparing Matrix (PRiSM) 

 
Figure 6. Predictive Risk Sparing Matrix (PRiSM) 

NAVWARSYSCOM’s Predictive Risk Sparing Matrix (PRiSM) as shown in Figure 6 is a 
product to accurately predict which critical Navy ship parts, related to Command, Control, 
Communications, Computers, and Intelligence (C4I) systems, are likely to fail during an 
operational deployment. If the ship parts’ failure can be correctly predicted, the parts can be 
proactively staged aboard Carrier Strike Group (CSG) and Amphibious Ready Group (ARG) 
platforms. Advanced analytics is needed for decision-making to replace parts with low remaining 
service life or pre-position parts afloat or ashore or accept risk with no parts support. The 
decisions are then to use for course of actions, for example, to build and fill AT-5 TYCOM 
Allowances onboard CSG/ARG ships, transfer parts to areas of responsibility (AOR) DD site, 
and monitor results during the deployments. This provides support from their advanced training 
phase (COMTUEX) to end of deployment in increasing mission readiness by reducing Mean 
Logistics Delay Time (MLDT) and relative Mean Down Time (MDT). Using various key data 
points, PRiSM utilizes ML analytics with Python, NumPy, Scikit-Learn, Pandas, Tableau, data 
structures, algorithm design for data science, and advanced programming and techniques to 
build a baseline of prediction performance. It has been previously funded by Commander, U.S. 
Pacific Fleet and developed by NAVSEA, NSWC Corona. In 2020, we tested the LLA algorithm 
with the PRiSM product. LLA uses the parts association patterns (e.g., what parts are likely to 
fail with what other parts) to improve the probability of failure. For the test using real-time USS 
Boxer (BOXER ARG) and USS Theodore Roosevelt Carrier Strike Group (TR CSG) deployment 
data, the predictive accuracy improved from ~60% to ~80% by adding LLA. PRiSM and LLA are 
complementary and use different information to pick up different types of failure, which made 
the improvement possible.  
Data Set 

The following detail of LLA to PRiSM is showing using the data from the TR CSG. Like 
many ML algorithms, LLA first sifts through a so-called train data set to extract patterns (i.e., 
failure association patterns for patterns), network models, and visualizations, and then apply the 
patterns to a test/validation data set as shown in Figure 7. Both data sets were extracted from 
the current PRiSM application, reflecting the real-time event of the TR CSG deployment. 

• Train data: Failure data 2 years prior to the TR CSG deployment 
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• Test/validation data: Failure data during the TR CSG deployment 

 
Figure 7. LLA Process Overview 

LLA Application 
We first use LLA to compute associations to see if two items or parts (used 

interchangeably below) are linked in the sense if one item fails, the other item also fails. The 
steps are shown below: 

1. In order to compute statistically significant association patterns, we first group the failed 
parts into “baskets.” Each basket is identified as a combination of the location of a failed 
part in the system (e.g., “object index,” “unit id”) and timestamp of the failure event (e.g., 
“year and month of event start date time”) as shown in Figure 8. We choose the failure 
event time “month” for the basket combination for associated failed items which fail in a 
period of month sequentially. Figure 8 also shows an example of basket and item pairs.  

 
Figure 8. Basket and Item Mapping for the TR CSG Sata 

2. LLA applies causal learning and compute counterfactual proportion difference, i.e., 
cf= [P(B|A) – P(B|Not A)]*(pooled sample size)                   (1) 

to compute the strength of the association of two parts as cf, where P(B|A) is the 
probability of part B fails within the same basket (i.e., fails at the same location and time 
frame) if part A fails. The pooled sample size is a pooled number of historical failure of 
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item A and B based on their pooled historical failure probabilities. cf is a z-score (PSU, 
2021) and we use cf >1.96 for p-value < 0.05 as the statistical significance for the 
associations. In Figure 9, item A could be more important than item B for causality, 
because A’s failure might cause B’s failure although A has fewer failure than B in total. 
The step generates an item network for all historical failed parts for the train data set. 

 
Figure 9. Causal Learning in LLA 

3. Once a network of items is generated using the measure defined in Equation (1) , a 
community finding algorithm (Girvan & Newman, 2002) is performed to cluster items into 
groups or communities, and  then compute centralities such as degree in, degree out, 
and betweenness scores.   

4. Outputs and centralities from LLA 
a. The probability of failure (POF): the percentage of baskets containing an item 

(e.g., item B in Figure 8)  
b. Degree in: the number of items with smaller POF (e.g., item A in Figure 9) fail 

together (i.e., in the same basket) with item B 
c. Degree in weight: degree in/average (cf), total estimated causal impact from 

other items 
d. Degree out: the number of items with bigger POF (e.g., item C in Figure 9) fail 

together (i.e., in the same basket) with item B 
e. Degree out weight: degree out/average (cf), total estimated causal impact to 

other items if item B fails 
f. Betweenness: the number of items to which item B links are in the different 

groups from the one of item B based on the community finding algorithm output.  
Results 

The outputs and centralities from LLA are used to improve the prediction for PRiSM. 
Fifty-one high impact C4I parts that were predicted failed and had actually, matched with either 
the LLA predictions or PRiSM predictions, improved from 36 matched from the PRiSM 
predictions alone. The total failed number of items failed is 64. PRiSM and LLA are 
complementary in terms of predicting failed items in this use case. 

Use Case 3: Readiness Impacts of Underfunding Spares Backlogs 
Navy Ships’ aviation and maritime units order spares from their general funds to fill 

modeled allowances. If there is not enough funding to buy all modeled allowances, spares 
requirements accumulate in a Financially Restricted Work Que (FRWQ) awaiting resourcing. In 
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the meantime, the systems with these parts support are still fielded, and the Fleet still generates 
requirements to replace these parts. 

The goal of this use case is to conduct a comparison of Fleet Demands against 
requirements in a FRWQ and assess these requirements with high priority demands linked to 
maritime units’ CASREP and aviation unit’s casualties, i.e., Non-Mission Capable Supply 
(NMCS). The result will help improve and determine the efficient and effective method of 
prioritizing materials that have the highest likelihood of demand balanced with their impact to 
readiness as a whole. 
Baseline 

The current tool and methodology of scoring and prioritizing the items are based on the 
DoD Manual 4140.01-V2 (DoD, 2018) in a FRWQ, with respect to their impact to the weapon 
system and aviation readiness data from CASREP and NMCS. The DoD Manual 4140.01-V2 
describes that two categories of measures, i.e., the weapons system criticality and fleet 
demand, are needed to prioritize items as shown in Figure 10. The weapons system criticality is 
measured by the Item Mission Essentiality Code (IMEC) or Weapon System Group (WSG) 
code. We use IMEC in this paper as follows: 

• IMEC Points: IMEC=5, 100 points awarded; IMEC=4, 80 points awarded; IMEC=3, 60 
points awarded; IMEC=2, 40 points awarded; and IMEC=1, 20 points awarded. Figure 
11 shows the detail of IMEC points calculation. 

The fleet demand is based on the two criteria of intermittency and correlation variance (CV) for 
scoring and prioritizing items  

• CV Points: calculated as the ratio of the standard deviation of the demand to the 
average demand and normally expressed as a percentage. A “low variance” is less than 
75%; “median variance” is between 75% and 125%; and “high variance” is greater than 
125%.   

• Intermittency Points: calculated as the percentage of total historical demand periods 
(e.g., months in a year) that have non-zero demand. A “continuous” intermittency for an 
item means it is needed greater than 85% of 12 months (i.e., at least 11 of 12 months), 
while “limited” is less than 10%; “uneven” is between 10% and 60%; “erratic” is between 
60% and 85%. Figure 12 show the details of CV and Intermittency calculations. 

• Platform/Type Points: In addition to the IMEC, CV, and Intermittence points, platform 
and hull type are also used in the baseline calculation for total points. The overarching 
idea is that afloat units are given higher priority than shore units. Within afloat, we can 
prioritize further by leaning on U.S. Fleet Forces Command, which releases a fleet 
priority list on a semi-annual basis. Figure 13(a) shows the detail of the points 
calculation. This is a very insightful list, as it shows which units are highest priority 
(deploying soon) vs. low priority units (those in extended shipyard avails). But even the 
lowest priority afloat unit would still receive slightly higher points than a shore unit. The 
platform/type ranking shown in Figure 13(b) is just for CVNs. Other platforms and types 
receive their own rankings. 
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Figure 10. Current Methods of Prioritizing Items for a FRWQ 

 

 
Figure 11. IMEC Points Calculation (DoD, 2018) 

 

 
Figure 13. Platform/Type Points Calculation 

In the base line calculation, total points are the sum of CV points, Intermittency points, 
IMEC points, and Platform/Type Points. The maximum possible score is 400 points, and the 
minimum possible score is 115 points.  
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Data Sets 
There are two data sets used in the use case: 

• Data set 1: Historical raw demand for items related to aviation readiness and NMCS 
• Data set 2: Historical raw demand for items related to maritime parts and CASREPs 

The baseline points calculation examples: 
 

1. An aviation example for NIIN 015761575 associated with R2010393330312 (LHA 6 
Document)  
• CV Points: low variance (100 points awarded) 
• Intermittency Points: continuous (100 points awarded) 
• IMEC Points: 4 (critical system; 80 points awarded) 
• Platform/Type Points: LDECK (afloat type, highest LDECK Priority for USFF; 100 

points awarded) 
• Grand Total: 380 points (highest priority for FRWQ Investment) 

2. A maritime example: NIIN 005181789 associated with N2194510161535 (DDG 71 
Document) 
• CV Points: low variance (100 points awarded) 
• Intermittency Category: continuous (100 points awarded) 
• IMEC Category: 5 (critical system; 100 points awarded) 
• Platform/Type Points: DDG (afloat type, 4th highest CG/DDG priority for USFF; 98.5 

points awarded) 
• Grand Total: 398.5 Points (highest priority for FRWQ Investment) 

LLA Application 
LLA can be applied to the maritime data set 2 more meaningfully since it contains a data 

attribute JCN that is used to group the items into a same requisition time or “basket.” The items 
are the National Item Identification Numbers (NIIN) and hull type. There are 611,335 
unique baskets and 280,762 unique items in this data set; 2,093,633 statistically significant 
associations are found. The hypothesis is that items that appear together in the same baskets in 
the raw data, historical data might they be associated with a same cause so they are demanded 
together.   

In general, LLA and network theory are potentially to provide a network and centrality 
view of the items/parts generated from raw demand data, which is related to the network 
analysis applications, for example, ranking people in a social network or ranking an object such 
as a biological gene in an environment where such a baseline ranking is not available. 

However, application of LLA in this use case do not conclude better and more 
meaningful rankings than the existing methods. The correlations of LLA scores and baseline 
points are shown in Table 1. LLA suggests using “Degree out weight” scores as the total 
estimated impact to other items as the scores for the item’s importance, which has the least 
correlation of the total points. One of association patterns discovered is meaningful as shown in 
Figure 14. POD has a correlation 0.34 with the total points. This indicates LLA’s centrality 
measure “Degree out weight” does not use demand as signals for deciding the importance of an 
item. This may indicate the argument of causality learning that one item’s demand might cause 
another item’s demand may not fit to this problem, and the low-demand and high-impact items 
may not exist in the FRWQ data.  
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Figure 14. Example of LLA Associations Between Two Items 

This calls for further research of LLA, possibly applications of other LAILOW methods 
such as supervised ML methods. For example, feedback data needs to be collected for 
consequences to understand how item prioritizing decisions and resource allocation decisions’ 
impact future readiness. Future work also includes a review of business processes at a holistic 
level and consideration to plan for a whole class of ships or a whole fleet for a period of time 
(e.g., the CVN-74, USS John C. Stennis group for last a few years). 

Table 1. Correlations of LLA and Baseline Points 

 Total Points CV Intermittency IMEC Platform/Type 

POD 0.34 0.34 0.36 0.09 -0.09 

Degree in weight 0.20 0.10 0.25 0.16 -0.11 

Degree out weight 0.08 0.06 0.19 -0.019 -0.06 

Degree 0.07 0.03 0.15 0.012 -0.04 

Betweenness 0.17 0.07 0.19 0.18 -0.13 
 

Conclusions 
In this paper, we show the LAILOW framework provides a holistic predictive and 

simulation platform to improve the readiness of Navy Ships. The Soar-RL, comparable to other 
predictive machine learning algorithms, rule-based, and explainable, can be integrated with the 
coevolutionary algorithm to conduct a wargame for a Navy complex enterprise. The wargame 
simulates and discovers possible new tests or “vulnerabilities” of a value chain for U.S. Ships 
and related complex enterprises, and evolve solutions or “resiliency” accordingly for uncertain 
and new conditions.  

Recommendations and Future Work for Navy Ships  
In some use cases, LAILOW methods may require to collect more right data for deep 

analytics such as feedback data to be collected for consequences to understand how item 
prioritizing decisions and resource allocation decisions’ impact future readiness. Navy Ships 
need to adopt more deep analytics, machine learning and AI algorithms for big data or no data 
and focus on the entire spectrum or end-to-end (E2E) logistic planning.  
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