Exploring the Space of Computational Memory Models

Nate Derbinsky and Nicholas A. Gorski University of Michigan

Lots of Knowledge

Learning agents gain knowledge that may be pertinent to making intelligent decisions

Туре	Source	Size
Language	WordNet	>800K assertions
Common Sense	Сус	>5M facts
Personal History	Episodic Memory	>42GB/year
Skills		

Memory Systems

To harness this experience, while remaining <u>reactive</u>, cognitive architectures employ one or more *memory systems*

Mechanisms to encode, store, and retrieve agent knowledge

Prior psychological and computational work evidences dissociation

Question: for a task, what is the functionally optimal set?

March 29, 2010

Exploring the Space

Hypothesis

For different classes of problem spaces, different classes of memory models will result in qualitatively different behavior

Goals

- Understand how memory system requirements and efficacy change along with parameterized properties of task
- 2. Develop computational structure and constraints for studies of memory system dissociation

Proposal Outline

- Assume adaptive (RL) agent with fixed initial knowledge
- Endowed with a set of memory systems
 - **∈** Memory space
- Situated in a domain
 - **∈** Task space
- Quantitative and qualitative analysis
 - Evaluation metrics

Large Design Space

Comprehensive empirical study of a large design space has been done before

- Reward functions in RL Singh, Lewis (2009)
- Cognitive architecture
 Howes, Lewis, Vera (2009)
- Game modeling
 Schvartzman, Wellman (2009)

Mean Fitness Growth of 3,240 Rewards

Progress: Memory Space

A Memory System

We define a memory system implementation as a commitment to features in the space of...

Encoding, Storage, Retrieval

Captures multiple memory systems along common dimensions to facilitate principled exploration

Memory Dimensions

Encoding

Initiation

Determination

Storage

Granularity

Dynamics

Retrieval

Accessibility

Initiation

Cue Determination

Selection

Result

Experience Selection

When and what to store

Experience -> Knowledge
How knowledge is stored

Knowledge -> Agent
How stored knowledge is brought to bear

Progress: Task Space

What is Task Space?

A preliminary taxonomy of environmental characteristics pertinent to learning control over internal memory systems

Can be quantitatively parameterized and are independent of each other

Task Space Dimensions

- Temporal Distance to Salient Knowledge
- Categories of Salient Knowledge
- Quantity of Salient Knowledge
- Quantity of Distracting Observations
- Sparseness of Reward
- Relative Cost of Acting vs. Reasoning
- Size of Action Space
- Stochasticity of Actions

March 29, 2010

Task Example

March 29, 2010

Temporal Distance to Salient Knowledge

Time between salient knowledge and a decision

Categories of Salient Knowledge

Number of distinct elements of salient knowledge that must be maintained

Categories of Salient Knowledge

Number of distinct elements of salient knowledge that must be maintained

Quantity of Salient Knowledge

Number of possible values for each category of salient knowledge

Quantity of Salient Knowledge

Number of possible values for each category of salient knowledge

March 29, 2010

Quantity of Distracting Observations

Number of observations irrelevant to decisions

March 29, 2010

Progress: Evaluation Metrics

Evaluation: Quantitative

- Average reward-per-step
- Maximum reward
- Speed of convergence
- Amount of memory
- Knowledge Coverage

Evaluation: Qualitative

Aggregate

Compare agent performance across different points in memory space

Individual

Categorizing behavior supported by memory in accordance with exhibited cognitive capabilities

Evaluation Example

Individual

Strategy

Shift?

Example Studies

Episodic Memory

- Fix task
- Vary encoding policy as a function of activation, emotion, and other elements of architecture state

Learning Control #1

- Fix task
- Vary available memories: episodic, semantic, bit

Learning Control #2

- Vary task along temporal distance
- Fix available memories

Unresolved Issues

- Incomplete memory and task taxonomies
- Automatically instantiating computational memory systems and tasks
- Optimally adaptive agent
- Memory space is truly, truly vast
 - So how to guarantee sufficient coverage of space?

Thank You

Questions?