Effective and Efficient Management of Soar's Working Memory via Base-Level Activation

Nate Derbinsky and John E. Laird University of Michigan

6 November 2011

AAAI-FS 2011 - Arlington, VA

Our Focus

Human-Level Intelligence

- Long-living, learning, real-time (<50 msec.) agents
- Numerous, complex tasks/environments
- NOT modeling human behavior/processes

Cognitive Architecture

- Computational infrastructure for intelligent agents
- Aspects of cognition that are constant over time and across different application domains

The Soar Cognitive Architecture

Soar: LT Memory Access

The reactivity of a Soar agent is the time required to make a decision, which includes accessing and modifying long-term memories

Small Working Memory

Necessity. Bounding Memory Retrievals

Opportunity. Efficient LT Memory Access

Working Memory Maintenance

Maintenance Model

Evaluating the Efficiency of a Maintenance Mechanism

- Number of elements in working memory (N)
 Large memory: **↑**N
- Number of activations/cycle (E)
 Dynamic, knowledge-rich agent: **↑**E
- Element lifetime (L)
 - Frequently accessed elements: **↑L**
 - − High element turnover: ↓L

Naïve Approach

<u>Algorithm</u>

- At each time step
 - For each memory element
 - If (Activation < Threshold)</p>
 - » Forget

Efficiency Evaluation

- Per Time Step: O(N)
- Per Memory Element: O(L)

Our Approach: Decay Prediction

<u>Algorithm</u> ~ (Nuxoll et al. 2004)

- On new activation event
 - *Predict* time of future decay
 - Add to *time-step-keyed map*
- Each time step
 - Remove keyed decayed elements in map

Efficiency Evaluation

— Per Time Step: O(# decayed + E*[Prediction Cost])

Decay Prediction

- 1. Cheaply approximate decay on each access
 - Underestimate time of decay by treating each memory access independently: O(1)
- 2. Exact determination
 - Binary parameter search: O(log₂L)
 - Not needed if element is removed by #1 estimate
 - Otherwise, <u>reduced</u> by the degree to which #1 is accurate

Decay Prediction Example

6 November 2011

AAAI-FS 2011 - Arlington, VA

Decay Prediction Example

Novel Base-level Decay Approximation

Given

constants

- Decay threshold (θ)
- Decay parameter value (d)

and a set of memory accesses...

- Time since access (s)
- Number of accesses (n)

solve for ...

• Time till memory decay (t)

Algorithm

For each memory access...

$$\ln(n \cdot [t+s]^{-d}) = \theta$$
$$\ln(n) - d \cdot \ln(t+s) = \theta$$
$$\ln(t+s) = \frac{\theta - \ln(n)}{-d}$$
$$t = e^{\frac{\theta - \ln(n)}{-d} - s}$$

Mechanism Evaluation

1. Synthetic

50k random, valid histories

2. Mobile Robotics

Synthetic: Approximation Quality

Synthetic: Prediction Complexity

Synthetic: Prediction Computation

Mobile Robotics Task In Simulation

Exploration

- 3rd floor, CSE Building, UM
 - 110 rooms
 - 100 doorways
- Builds map in memory from experience

6 November 2011

AAAI-FS 2011 - Arlington, VA

Agent Map Knowledge

Room Features

- Position, size
- Walls, doorways
- Objects
- Waypoints

Activation

- Initial exploration
- Planning/Navigation

Mobile Robotics Data (1)

With appropriate decay, base-level activation maintains working memory size comparably with task-specific rules

AAAI-FS 2011 - Arlington, VA

Mobile Robotics Data (2)

AAAI-FS 2011 - Arlington, VA

Automatic WM Maintenance

- Takes advantage of multiple memory systems
- Improves agent reactivity
 - Low computational overhead
 - Sound agent reasoning
 - No task-specific knowledge

Related Work

Modeling

- ACT-R [Anderson et al. 2004]
- Soar [Chong 2003][Chong 2004]

Cognitive Benefits

- Task Switching [Altmann and Gray 2002]
- Heuristic Inference [Schooler and Hertwig 2005]
- Agent Reactivity [This Work]

Limitations

- Single decay model
 - Are recency/frequency sufficient to capture memory element importance?
- Single task
 - Regularities of spatial locality map well to recency/frequency
 - LTM elements are never inconsistent with WM

Thank You :-)

Questions?