
Effective and Efficient Management of Soar’s Working Memory
via Base-Level Activation

Nate Derbinsky and John E. Laird
University of Michigan

2260 Hayward St.
Ann Arbor, MI 48109-2121

{nlderbin, laird}@umich.edu

Abstract
This paper documents a functionality-driven exploration of
automatic working-memory management in Soar. We first
derive and discuss desiderata that arise from the need to
embed a mechanism for managing working memory within
a general cognitive architecture that is used to develop real-
time agents. We provide details of our mechanism,
including the decay model and architecture-independent
data structures and algorithms that are computationally
efficient. Finally, we present empirical results, which
demonstrate both that our mechanism performs with little
computational overhead and that it helps maintain the
reactivity of a Soar agent contending with long-term,
autonomous simulated robotic exploration as it reasons
using large amounts of acquired information.

Introduction
Long-living, learning agents facing numerous, complex
tasks will experience large amounts of information that
may be useful to encode and store as internal knowledge.
This information may include declarative facts about the
world, such as lexical data (Douglass, Ball, and Rodgers
2009), or may relate to the agent’s own autobiographical
experience (Laird and Derbinsky 2009).

In order to scale to human-level intelligence, cognitive
architectures designed to support these types of agents
must encode and store experience such that the agent can
later retrieve relevant information to reason and make
decisions, while remaining reactive to dynamic
environments (Laird and Wray 2010). In part to satisfy
these requirements, the Soar cognitive architecture (see
Figure 1; Laird 2008) has been recently extended with
multiple dissociated, symbolic memory systems

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Derbinsky and Laird 2010): working memory encodes
structures that are directly accessible to agent reasoning,
while long-term memory systems support flexible, yet
indirect, access to skills, facts, and past experience.

These memory systems have introduced both the
computational necessity and the functional opportunity to
investigate architectural methods for maintaining a small
working memory. The necessity arises because large
amounts of knowledge in Soar’s working memory can
impede agent reactivity as a result of expensive rule
matching and episodic reconstruction. However, the advent
of semantic memory affords the agent the functionality to
efficiently store large amounts of declarative knowledge in
a long-term store, retrieving to working memory as
necessary for reasoning.

In this paper, we explore methods for automatically
managing Soar’s working memory. After discussing
related work, we derive and discuss desiderata that arise
from the need to embed working-memory management
within a general cognitive architecture that is used to
develop real-time agents. We then provide details of our
mechanism, including pertinent structures of Soar; our
decay model, which incorporates the base-level activation

Figure 1. The Soar cognitive architecture.

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

82

model (Anderson et al. 2004); and novel system-
independent data structures and algorithms for working-
memory decay that are computationally efficient. We then
present empirical results, which demonstrate both that our
mechanism performs with very little computational
overhead, and that it helps maintain the reactivity of a Soar
agent contending with long-term, autonomous simulated
robotic exploration, even as it reasons using large amounts
of acquired information.

Related Work
Previous research in cognitive modeling has investigated
models of working-memory decay for the purpose of
accounting for human behavior and experimental data. As
a prominent example, memory decay has long been a core
commitment of the ACT-R theory (Anderson et al. 2004),
as it has been shown to account for a class of memory
retrieval errors (Anderson, Reder, and Lebiere 1996).
Additionally, some modeling work has been done in Soar,
specifically investigating particular task-performance
effects of forgetting short-term (Chong 2003) and
procedural (Chong 2004) knowledge. By contrast, the
motivation for and outcome of this work is to investigate
and evaluate a specific functional benefit of managing
working-memory size.

Prior research supports the potential for cognitive
benefits of short-term memory decay, such as in task-
switching (Altmann and Gray 2002) and heuristic
inference (Schooler and Hertwig 2005). In this paper, we
focus on improved agent reactivity.

We extend prior work on working-memory activation in
Soar (Nuxoll, Laird, and James 2004). As efficiently
implementing base-level decay is a challenging issue in
cognitive architecture research (Douglass, Ball, and
Rodgers 2009), we contribute algorithms that improve
computational efficiency and a focused mechanism
evaluation. We also perform the first computational
investigation of how multiple memory systems combine
within a cognitive architecture to balance sound agent
reasoning with the need for a small working memory.

Mechanism Desiderata
These desiderata arise from the need to embed working-
memory management within a general cognitive
architecture that is used to develop real-time agents.
D1. Task Independence

The mechanism must support agents across a variety
of domains and problems.

D2. Minimize Working-Memory Size
The mechanism must maintain a small amount of
knowledge directly available to agent reasoning.

D3. Minimize Impact on Agent Reasoning
Many cognitive architectures, including Soar, make a
closed-world assumption with respect to reasoning
over knowledge stored in memory. That is, the
memory system is assumed to be a complete
representation of the agent’s current beliefs, and thus
if processing over a memory cannot find a knowledge
structure, it is assumed not to exist. Consequently, an
automatic mechanism for removing knowledge from
working memory could have serious implications for
the soundness of agent reasoning. It is important that
removed knowledge is either unimportant for current
processing (such as dated or unrelated information) or
recoverable from another source.

D4. Minimize Computational Overhead
The mechanism must not incur substantial
computational cost and must scale to large amounts of
learned knowledge in dynamic environments.

We claim that a mechanism that satisfies these
desiderata serves as a necessary precondition for cognitive
systems to engage in complex reasoning while scaling to
large amounts of acquired data over long periods of time.

Working-Memory Management in Soar
Soar is a cognitive architecture that has been used for
developing intelligent agents and modeling human
cognition. Historically, one of Soar’s main strengths has
been its ability to efficiently represent and bring to bear
symbolic knowledge to solve diverse problems using a
variety of methods (Laird 2008). We begin with a
description of pertinent architectural structures and then
convey the design and rationale of our automatic working-
memory management mechanism, as related to our
mechanism desiderata.

The Soar Cognitive Architecture
Figure 1 shows the structure of Soar. At the center is a
symbolic working memory that represents the agent’s
current state. It is here that perception, goals, retrievals
from long-term memory, external action directives, and
structures from intermediate reasoning are jointly
represented as a connected, directed graph. The primitive
representational unit of knowledge in working memory is a
symbolic triple (identifier, attribute, value), termed a
working-memory element, or WME. The first symbol of a
WME (identifier) must be an existing node in the graph, a
constraint that maintains graph connectivity, whereas the
second (attribute) and third (value) symbols may either be
terminal constants or non-terminal graph nodes. Multiple
WMEs that share the same identifier may be termed an
“object,” and the individual WMEs sharing that identifier
are termed “augmentations” of that object.

83

Procedural memory stores the agent’s knowledge of
when and how to perform actions, both internal, such as
querying long-term declarative memories, and external,
such as control of robotic actuators. Knowledge in this
memory is represented as if-then rules. The conditions of
rules test patterns in working memory and the actions of
rules add and/or remove working-memory elements. Soar
makes use of the Rete algorithm for efficient rule matching
(Forgy 1982) and scales to large stores of procedural
knowledge (Doorenbos 1995). However, the Rete
algorithm is known to scale linearly with the number of
elements in working memory, a computational issue that
motivates maintaining a relatively small working memory.

Soar incorporates two long-term declarative memories,
semantic and episodic (Derbinsky and Laird 2010).
Semantic memory stores working-memory objects,
independent of overall working-memory connectivity
(Derbinsky, Laird, and Smith 2010), and episodic memory
incrementally encodes and temporally indexes snapshots of
working memory, resulting in an autobiographical history
of agent experience (Derbinsky and Laird 2009). Agents
retrieve knowledge from one of these memory systems by
constructing a symbolic cue in working memory; the
intended memory system then interprets the cue, searches
its store for the best matching memory, and reconstructs
the associated knowledge in working memory. For
episodic memory in particular, the time to reconstruct
knowledge depends on the size of working memory at the
time of encoding, another computational motivation for a
concise agent state.

Agent reasoning in Soar consists of a sequence of
decisions, where the aim of each decision is to select and
apply an operator in service of the agent’s goal(s). The
primitive decision cycle consists of the following phases:
encode perceptual input; fire rules to elaborate agent state,
as well as propose and evaluate operators; select an
operator; fire rules that apply the operator; and then
process output directives and retrievals from long-term
memory. The time to execute the decision cycle, which
primarily depends on the speed with which the architecture
can match rules and retrieve knowledge from episodic and
semantic memories, determines agent reactivity.

There are two levels of persistence for working-memory
elements added/removed as the result of rule firing. Rules
that fire to apply a selected operator create operator-
supported structures. These WMEs will persist in working
memory until deliberately removed. In contrast, rules that
do not condition upon a selected operator create
instantiation-supported structures. These WMEs only
persist as long as the rules that created them match. This
distinction is relevant to managing working-memory.

As evident in Figure 1, Soar has additional memories
and processing modules; however, they are not pertinent to
this paper and are not discussed further.

Working-Memory Management
To design and implement a mechanism that satisfied our
desiderata, we built on a previous framework of working-
memory activation in Soar (Nuxoll, Laird, and James
2004). The primary activation event for a working-memory
element is the firing of a rule that tests or creates that
WME. Additionally, when a rule first adds an element to
working memory, the activation of the new WME is
initialized to reflect the aggregate activation of the set of
WMEs responsible for its creation.

Based upon activation history, the activation level of a
working-memory element is calculated using a variant of
the base-level activation model (Anderson et al. 2004):

� � �� � ��
��

�

���

�

where n is the number of memory activations, tj is the time
since the jth activation, and d is a free decay parameter.
The motivation for base-level activation is to identify those
elements that have not been used recently and/or
frequently, which is an indication of their importance to
reasoning (desideratum D3). For computational efficiency
(D4), activation history size is bounded, such that each
working-memory element maintains at most a history of
the 10 most recent activations, and the activation
calculation is supplemented by an approximation of the
more distant past (Petrov 2006). Our model of activation
sources, events, and decay is task-independent, thereby
satisfying desideratum D1.

At the end of each decision cycle, Soar removes from
working memory each WME that satisfies all of the
following requirements, with respect to τ, a static,
architectural threshold parameter:
R1. The WME was not encoded directly from perception.
R2. The WME is operator-supported.
R3. The activation level of the WME is less than τ.
R4. The WME is part of an object stored in semantic

memory.
R5. The activation levels of all other WMEs that are part

of the same object are less than τ.

We adopted requirements R1-R3 from Nuxoll, Laird,
and James (2004), whereas R4 and R5 are novel.
Requirement R1 distinguishes between the decay of mental
representations of perception, and any dynamics that may
occur with actual sensors, such as refresh rate, fatigue,
noise, or damage. Requirement R2 is a conceptual
optimization: since operator-supported structures are
persistent, of which instantiation-supported structures are
entailments, if we properly manage the former, the latter
are handled automatically. This means that if we properly
remove operator-supported structures, any instantiation-
supported structures that depend upon them will also be
removed, and thus our mechanism only manages operator-

84

supported structures. The concept of a fixed lower bound
on activation, as defined by R3, was adopted from
activation limits in ACT-R (Anderson, Reder, and Lebiere
1996), and dictates that working-memory elements will
decay in a task-independent fashion (D1) as their use for
reasoning becomes less recent/frequent (D2).

Requirement R4 dictates that our mechanism only
removes knowledge from working memory that can be
deliberately reconstructed from semantic memory. From
the perspective of cognitive modeling, this constraint on
decay begins to resemble a working memory that is in part
an activated subset of long-term memory (Jonides et al.
2008). From an agent functionality perspective, however,
requirement R4 serves to balance the degree of working-
memory decay (D2) with support for sound reasoning
(D3). Knowledge in Soar’s semantic memory is persistent,
though may change over time. Depending upon the task
and the agent’s knowledge management strategies, it is
possible that any knowledge our mechanism removes may
be recovered via deliberate reconstruction from semantic
memory. Additionally, knowledge that is not in semantic
memory can persist indefinitely to support agent reasoning.

Requirement R5 supplements R4 by providing partial
support for the closed-world assumption. R5 dictates that
either all object augmentations are removed, or none. This
policy leads to an object-oriented representation whereby
agent knowledge can distinguish between objects that have
been removed, and thus have no augmentations, and those
that simply are not augmented with a particular feature or
relation. R5 makes an explicit tradeoff between D2 and
D3, weighting more heavily the ability of an agent to
reason soundly, at the expense of the speed of working-
memory decay. This functionality-driven requirement leads
to a decay policy similar to what is in the declarative
module of ACT-R, where activation is associated with
each chunk and not individual slot values.

Efficient Implementation
We now present and analyze the novel data structures and
algorithms that we developed to efficiently support our
mechanism. Note that the methods in this section are not
specific to Soar, so we begin with a problem formulation.
Problem Formulation. Let memory M be a set of
elements, {m1, m2, …}. Let each element mi be defined as a
set of pairs (a, k), where k refers to the number of times
element mi was activated at time a. We assume |mi| ≤ c: the
number of activation events for any element is bounded.

We assume that activation of an element is computed
according to the base-level model (Anderson et al. 2004),
denoted as b(m, d, t), where m is an element, d is a decay
rate parameter, and t is the current time. We define an
element mi as decayed at time t with respect to decay rate
parameter d and threshold parameter θ if b(mi, d, t) < θ.

Given a static element mi, we define Li as the number of
time steps required for mi to decay, relative to time step t:

�� � ������ � �� � �� ��� � � �� � ��
For example, element {(3, 1), (5, 2)} was activated once

at time step three and twice at time step five. Assuming
decay rate 0.5 and threshold -2, this element has activation
about 0.649 at time step 7 and is not decayed (L=489).

During a simulation time step t, the following actions
can occur with respect to memory M:

S1. A new element is added to M.
S2. An existing element is removed from M.
S3. An existing element is activated x times.

If simulation action S3 occurs with respect to element mi, a
new pair (t, x) is added to mi. To maintain boundedness, if
|mi| > c, the pair with smallest a is removed from mi.

Thus, given a memory M, the activation-based decay
problem, after each time step in a simulation, is to identify
and remove the subset of elements, D � M, that have
decayed since the previous time step.

Given this problem definition, a naïve approach is to
determine the decay status of each element after every
simulation time step. This test will require computation
O(|M|), scaling linearly with the average memory size.
Furthermore, the computation expended upon each
element, mi, will be linear in the number of time steps
where mi � M, estimated as O(Li) for a static element mi.
Our Approach. We draw inspiration from the work of
Nuxoll, Laird, and James (2004): rather than checking
memory elements for decay status, we “predict” the future
time step when the element will decay. Thus, at the end of
each simulation time step, we iterate across each element
that either (S1) that wasn’t previously in the memory or
(S3) was newly activated. For each element, we predict the
time of future decay (discussed shortly) and add the
element to an ordered decay map, where the map key is
time step and the value is a set of elements predicted to
decay at that time. If the element was already within the
map (S3), we remove it from its old location before adding
to its new location. All insertions/removals require time
logarithmic in the number of distinct decay time steps,
which is bounded by the total number of elements (|M|).
During any time step, the set D is simply those elements in
the list indexed by the current time step that are decayed.

To predict element decay, we implement a novel two-
phase process. After a new activation (S3), we employ an
approximation that is guaranteed to underestimate the true
value of Li. If, at a future time step, we encounter the
element in D and it has not decayed, we then determine the
correct prediction using a binary parameter search.

The key observation of our novel decay approximation
is that there exists a closed-form solution to predict base-
level decay if we only consider a single time of activation

85

(i.e. |mi|=1). Thus, we compute decay predictions for each
pair of an element independently and sum them to form the
approximate prediction. Below we derive the closed form
solution: given a single element pair at time t, we solve for
tp, the future time point of element decay given only a
single activation…

�� � � �� � � � �

��

� �

�� � � � � �� �� � �� � �� � �

�� � �

���� ���
�� � �� � ��

For clarity, since k is the number of activations at the same
time point, we can rewrite the summed terms as a product.
Furthermore, we time shift the decay term by the
difference between the current time step, t, and that of the
element pair, a, thereby predicting L with respect to an
element with only a single time of activation.

The time required to compute the approximate
prediction of a single pair is constant (and common values
can be cached to reduce this effort). The overall
approximation prediction is linear in the number of pairs,
which, because element size is bounded by c, is O(1). The
computation required for binary parameter search of
element mi is O(log2Li). However, this computation is only
necessary if the element has not decayed, or been removed
from M, at the predicted time.

Empirical Evaluation
In the previous sections we discussed desiderata for an
automatic working-memory management mechanism and
described our mechanism in Soar. In this section we
evaluate this mechanism according to those desiderata. We
make two claims: our mechanism (C1) satisfies our
desiderata and (C2) improves agent reactivity within a
dynamic environment as compared to an agent without
working-memory management.

We begin with an evaluation of the mechanism on
synthetic data, focusing on the quality and efficiency of our
prediction approach, and then continue to a long-term task
that requires an agent to amass and reason about large
amounts of learned knowledge.

Focused Mechanism Evaluation
Our synthetic data consists of 50,000 memory elements,
each with a randomly generated pair set. The size of each
element was randomly selected from between 1 and 10, the
number of activations per pair (k) was randomly selected
between 1 and 10, and the time of each pair (a) was
randomly selected between 1 and 999. We verified that
each element had a valid history with respect to time step

1000, meaning that each element would not have decayed
before time step 1000. Furthermore, each element
contained a pair with at least one access at time point 999,
which simulated a fresh activation (S3). For all synthetic
experiments we used a decay rate, d, of 0.8 and a decay
threshold, θ, of -1.6. Given these constraints, the greatest
number of time steps for an element to decay is 3332.

Our first experiment (see Figure 2) attests to the quality
of our novel decay approximation. On the y-axis is the
cumulative proportion of the synthetic elements and the x-
axis plots absolute temporal error of the approximation,
where a value of 0 indicates that the approximation was
correct, and non-zero indicates how many time steps the
approximation under-predicted. We see that the
approximation was correct for over 60% of the elements,
but did underestimate over 500 time steps for 20% of the
elements and over 1000 time steps for 1% of the elements.
Under the constraints of this data set, it is possible for this
approximation to underestimate up to 2084 time steps.

The second experiment (see Figure 3) compares
aggregate prediction time, in microseconds, between our
approximation and exact calculation using binary
parameter search. We see an order of magnitude
improvement both in the maximum amount of computation
time expended across the synthetic elements, as well as the
average time, though both computations are fast in context
of 50-msec. decisions. We did not compare these results
with a naïve approach, as this experimentation would be
dependent upon a model of memory size (|M|).

Figure 3. Synthetic prediction approximation efficiency evaluation.

Figure 2. Synthetic approximation quality evaluation.

86

These experimental results attest to our progress towards
satisfying desideratum D4 in isolation. It is important to
note that our mechanism is efficient when applied to the
activation-based decay problem, as previously formulated.
A different set of data structures and algorithms are
required to efficiently support the base-level activation
model for other problems, such as memory retrieval bias
(Derbinsky, Laird, and Smith 2010).

Agent Evaluation
For this evaluation, we extended an existing system where
Soar controls a simulated mobile robot (Laird, Derbinsky,
and Voigt 2011). Our evaluation uses a simulation instead
of a real robot because of the practical difficulties in
running numerous long experiments in large physical
spaces. However, the simulation is quite accurate and the
Soar rules (and architecture) used in the simulation are
exactly the same as the rules used to control the real robot.

The agent can issue output directives to move forward
and backward and turn in place. It has a laser-range finder
mounted in front that provides distances to 180 points
throughout 180 degrees. The middleware between the
simulator and Soar condenses those points to 5 regions that
are sufficient for the agent to navigate and avoid obstacles.
We supplement real sensors with virtual sensors, such that
the robot can sense its own location, the room it is in, the
location of doors and walls, and different types of objects.
In sum, agent perception includes approximately 150
sensory data elements, with approximately 20 changing
each decision cycle. The changes peak at 260 per cycle
when the robot moves into a room because all the data
about the current rooms, walls, and doorways change at
once. Based upon prior experience in applying Soar to
numerous and varied domains, including action games,
large-scale tactical simulation, and interactive mobile
phone applications, we contend that this domain is
sufficiently dynamic to evaluate claim C2.

The agent’s task within this environment is to visit every
room on the third floor of the Computer Science and
Engineering (CSE) building at the University of Michigan.
This task requires the agent to visit over 100 rooms and
requires about 1 hour of real time. During its exploration it
incrementally builds up an internal map, which when
completed, requires over 10,000 working-memory
elements to represent and store. We contend that this map
constitutes a relatively large amount of learned knowledge
(C2), as well as a baseline by which to evaluate claim C1,
with respect to desideratum D2. In addition to storing
topographic information, the agent must also reason about
and plan using the map in order to find efficient paths for
moving to distant rooms it has sensed but not visited. We
contend that understanding how this reasoning scales
computationally as the agent amasses more and more map

information provides an indication as to relative agent
reactivity, a core component of claim C2.
Evaluation Metrics. In order to evaluate desideratum D2,
we measure working-memory size over the course of the
task. In order to evaluate desideratum D4 and claim C2, we
measure the maximum process time required to complete a
primitive Soar decision cycle, a direct measure of agent
reactivity. We deliberately chose this metric instead of
average or total time, both of which can mask computation
“surges” during the task. We compare maximum process
time to 50 msec., a response time we have found as
sufficient for real-time reactivity in multiple domains.

We aggregate these metrics for each 10 seconds of
experimentation, all of which is performed on an Intel i7
2.8GHz CPU with 8GB of memory, running Soar 9.3.1 on
the Windows 7 operating system. Soar is open source and
freely available to download on all major platforms at
[http://sitemaker.umich.edu/soar]. We did not duplicate our
experiments sufficiently to establish statistical significance
and the results we present are from individual experimental
runs. However, we found qualitative consistency across
our runs, such that the variance between runs is small as
compared to the trends we focus on below.
Experimental Conditions. We make use of the same
agent for all of our experiments (Laird, Derbinsky, Voigt
2011). In order to evaluate our claims, however, we modify
small amounts of task knowledge, represented in rules, and
change architectural parameters, as described below.

The first experimental condition compares alternative
approaches to maintaining declarative map information.
The baseline agent, which we term A0, maintains all
declarative map information in both Soar’s working and
semantic memories. A slight modification to this baseline,
A1, includes hand-coded rules to prune away rooms in
working memory that are not required for immediate
reasoning or planning. A second modification of the
baseline, A2, makes use of our working-memory
management mechanism. Both agents A1 and A2 contain
identical task knowledge to reconstruct from semantic
memory any WMEs that are needed for immediate
reasoning. Comparing the working-memory sizes of agents
A1 and A2 allows us to evaluate D2, while comparing
decision cycle time of A0 and A2 allows us to evaluate C2.
We also experiment with different values of d, the base-
level activation decay rate parameter, to understand the
tradeoffs involved in a more/less aggressive policy for
task-independently pruning working memory, which better
informs both claims C1 and C2. We use τ = -2 as our
architectural threshold parameter value for all experiments.

The second experimental condition relates to how our
mechanism affects agent reactivity (C2) with respect to
episodic memory retrievals. Episodic memory is disabled
for all experiments above, and so we make two changes for

87

this series of experiments. First, we set an architectural
parameter such that episodic memory automatically
encodes episodes each time the agent issues an
environmental directive, such as changing direction.
Second, we add task knowledge to retrieve episodes related
to, but not incorporated in, task reasoning. Specifically,
whenever the agent reaches a new doorway, it recalls the
last room it visited. While episodic memory is not actively
used for the exploration task in this paper, the same agent
we are utilizing contends with more complex tasks,
including patrolling and building clearing, which do make
use of episodic retrievals, so this analysis informs C2. We
hypothesized that a more aggressive working-memory
management policy would lead to faster episodic
reconstructions and thus implemented a parallel
experimental setup to those above: E0 has no working-
memory management; E1 uses task knowledge, in rules, to
manage working memory; and E2, with a set of decay
rates, uses our automatic mechanism.
Results. The first set of results (see Figure 4) compares
working-memory size between conditions A0, A1, and A2.
We note first the major difference in working-memory size
between A0 and A1 at the completion of the simulation,
when the working memory of A1 contains more than
11,000 fewer elements, more than 90% less than A0. We
also notice that the greater the decay rate parameter for A2
(indicated by “DR”), the smaller the working-memory size,
where a value of 0.5 qualitatively tracks A1. This finding
suggests that our mechanism, with an appropriate decay
rate, keeps working-memory at a size comparable to that
maintained by a hand-coded approach in this task (D2).

While collecting these data, we also compared
maximum decision cycle time between conditions A0, A1,
and A2 as the simulation progressed. Without any form of
working-memory management, processing time for A0
increased linearly, as we would expect from an architecture
using a Rete-based algorithm for rule matching, but was
less than 8.6 msec. after one hour, far below the reactivity
threshold of 50 msec. By comparison, A1, despite

increased rule firing from hand-coded rules, maintained a
fairly constant maximum decision time of less than 3.3
msec. A2 results depended upon the decay rate, where
lower values (less aggressive management) qualitatively
tracked A0, and higher values (more aggressive
management) tracked A1. For instance, applying a decay
rate of 0.3 resulted in a linear trend, reaching 8.9 msec.
after one hour, performing worse in absolute computation
time as compared to A0, likely due to extra activation-
related processing. However, a decay rate of 0.5 exhibited
a relatively constant maximum processing time of less than
3.5 msec., also incurring some extra processing cost, as
compared to A1, from activation-related computation.
These results suggest that our mechanism, with an
appropriate decay rate, has the potential to improve agent
reactivity, as related to rule matching, compared to an
agent without working-memory management (C2), while
incurring relatively small computational overhead.

The second set of results (see Figure 5) includes the cost
of episodic retrievals and compares maximum decision
cycle time, measured in msec., between conditions E0, E1,
and E2 as the simulation progresses. As hypothesized, we
see a growing difference in time between E0 and E2 as
working memory is more aggressively managed (i.e.
greater decay rate), demonstrating that episodic
reconstruction, which scales with the size of working
memory at the time of episodic encoding, benefits from
working-memory management (C2). We also see that with
a decay rate of 0.5, our automatic mechanism performs
comparably to A1: since costs in these data are dominated
by episodic retrievals, as compared to rule matching, extra
activation-related processing is relatively inconsequential,
and so the results are indistinguishable in the figure. We
note that without sufficient working-memory management
(E0; E2 with decay rate 0.3), episodic memory retrievals
are not tenable for an agent that must reason with this
amount of acquired information, as the maximum required
processing time exceeds the reactivity threshold of 50msec.

Figure 5. Agent maximum decision time comparison with episodic
memory retrievals.

Figure 4. Agent working-memory size comparison.

88

Discussion
In this paper, we demonstrated that an automatic
mechanism to manage working-memory elements in Soar
serves an important functional purpose: scaling reactivity
for agents that must reason about large stores of acquired
information. While it always has been possible to write
rules to prune Soar’s working memory, this approach
required task-specific knowledge that was difficult to
encode, problematic for the agent to learn, and interrupted
deliberate agent processing. In this work, we proposed and
presented an evaluation of a novel approach that pushes
this functionality into the architecture: our mechanism
takes advantage of multiple memory systems in a manner
that, empirically, comparably improves agent reactivity
without incurring undue computational cost nor loss to
reasoning soundness. This is the first work that
architecturally exploits activation-based working-memory
management, in conjunction with multiple memory
systems, in order to support long-lived, learning agents.

There are several limitations of this paper that should be
addressed in future work. First, we have only investigated
a single decay model, base-level activation. There is prior
analytical and empirical work to support the efficacy of
this model in context of cognitive modeling, but further
evaluation should consider additional models, especially
those that may more directly measure the usefulness of
working-memory elements to current agent reasoning.
Also, we evaluated a single task in a single domain, where
base-level activation-based working-memory management
was well suited to capture the regularities of spatial locality
within a topographic map. Finally, this work should be
extended to cognitive systems other than Soar, an
exploration for which we have described efficient methods.

Acknowledgments

The authors acknowledge the funding support of the Air
Force Office of Scientific Research under contract
FA2386-10-1-4127.

References
Altmann E., Gray, W. 2002. Forgetting to Remember: The
Functional Relationship of Decay and Interference. Psychological
Science 13 (1): 27-33.
Anderson, J. R., Reder, L., Lebiere, C. 1996. Working Memory:
Activation Limitations on Retrieval. Cognitive Psychology 30:
221-256.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere,
C., Qin, Y. 2004. An Integrated Theory of the Mind.
Psychological Review 111 (4): 1036-1060.
Chong, R. 2003. The Addition of an Activation and Decay
Mechanism to the Soar Architecture. In Proc. of the Fifth

International Conference on Cognitive Modeling, 45-50.
Bamberg, Germany.
Chong, R. 2004. Architectural Explorations for Modeling
Procedural Skill Decay. In Proc. of the Sixth International
Conference on Cognitive Modeling. Pittsburgh, PA.
Derbinsky, N. Laird, J. E. 2009. Efficiently Implementing
Episodic Memory. In Proc. of the Eighth International
Conference on Case-Based Reasoning, 403-417. Seattle, WA.
Derbinsky, N., Laird, J. E. 2010. Extending Soar with Dissociated
Symbolic Memories. In Proc. of the Symposium on Human
Memory for Artificial Agents. AISB, 31-37. Leicester, UK.
Derbinsky, N., Laird, J. E., Smith, B. 2010. Towards Efficiently
Supporting Large Symbolic Declarative Memories. In Proc. of the
Tenth International Conference on Cognitive Modeling, 49-54.
Philadelphia, PA.
Doorenbos, R. B. 1995. Production Matching for Large Learning
Systems. Ph.D. diss., Computer Science Dept., Carnegie Mellon,
Pittsburgh, PA.
Douglass, S., Ball, J., Rodgers, S. 2009. Large Declarative
Memories in ACT-R. In Proc. of the Ninth International
Conference on Cognitive Modeling, 222-227. Manchester, UK.
Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence 19 (1): 17-37.
Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M.
G., Moore, K. S. 2008. The Mind and Brain of Short-Term
Memory. Annual Review of Psychology 59: 193-224.
Laird, J. E. 2008. Extending the Soar Cognitive Architecture. In
Proc. of the First Conference on Artificial General Intelligence,
224-235. Memphis, TN.
Laird, J. E., Derbinsky, N. 2009. A Year of Episodic Memory. In
Proc. of the Workshop on Grand Challenges for Reasoning from
Experiences. IJCAI, 7-10. Pasadena, CA.
Laird, J. E., Derbinsky, N., Voigt, J. 2009. Performance
Evaluation of Declarative memory Systems in Soar. In Proc. of
the Twentieth Behavior Representation in Modeling &
Simulation Conference, 33-40. Sundance, UT.
Laird, J. E., Wray III, R. E. 2010. Cognitive Architecture
Requirements for Achieving AGI. In Proc. of the Third
Conference on Artificial General Intelligence, 79-84. Lugano,
Switzerland.
Nuxoll, A., Laird, J. E., James, M. 2004. Comprehensive
Working Memory Activation in Soar. In Proc. of the Sixth
International Conference on Cognitive Modeling, 226-230.
Pittsburgh, PA.
Nuxoll, A., Tecuci, D., Ho, W. C., Wang, N. 2010. Comparing
Forgetting Algorithms for Artificial Episodic memory Systems.
In Proc. of the Symposium on Human Memory for Artificial
Agents. AISB, 14-20. Leicester, UK.
Petrov, A. 2006. Computationally Efficient Approximation of the
Base-Level Learning Equation in ACT-R. In Proc. of the Seventh
International Conference on Cognitive Modeling, 391-392.
Trieste, Italy.
Schooler, L., Hertwig, R. How Forgetting Aids Heuristic
Inference. Psychological Review 112 (3): 610-628.

89

	FSS-11
	2011 AAAI Fall Symposia
	Symposia Contents
	FS-11-01
	FS-11-02
	FS-11-03
	FS-11-04
	FS-11-05

	Help
	Terms
	AAAI Website
	Symposium Series Website

