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Abstract

We address the problem of planning collision-free paths
for multiple agents using optimization methods known
as proximal algorithms. Recently this approach was ex-
plored in Bento et al. (2013), which demonstrated its
ease of parallelization and decentralization, the speed
with which the algorithms generate good quality solu-
tions, and its ability to incorporate different proximal
operators, each ensuring that paths satisfy a desired
property. Unfortunately, the operators derived only ap-
ply to paths in 2D and require that any intermediate
waypoints we might want agents to follow be preas-
signed to specific agents, limiting their range of applica-
bility. In this paper we resolve these limitations. We in-
troduce new operators to deal with agents moving in ar-
bitrary dimensions that are faster to compute than their
2D predecessors and we introduce landmarks, space-
time positions that are automatically assigned to the set
of agents under different optimality criteria. Finally, we
report the performance of the new operators in several
numerical experiments.

1 Introduction
In this paper we provide a novel set of algorithmic build-
ing blocks (proximal operators) to plan paths for a system
of multiple independent robots that need to move optimally
across a set of locations and avoid collisions with obstacles
and each other. This problem is crucial in applications in-
volving automated storage, exploration and surveillance.

Even if each robot has few degrees of freedom, the joint
system is complex and this problem is hard to solve (Reif
1979; Hopcroft, Schwartz, and Sharir 1984). We can divide
existing algorithms for this problem into global planners,
if they find collision-free beginning-to-end paths connecting
two desired configurations, or local planners, if they find
short collision-free paths that move the system only a bit
closer to the final configuration.

We briefly review two of the most rigorous approaches.
Random sampling methods, first introduced in (Kavraki and
Latombe 1994; Kavraki et al. 1996), are applicable to global
planning and explore the space of possible robot configura-
tions with discrete structures. The rapidly-exploring random
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tree algorithm (RRT; LaValle and Kuffner 2001), is guar-
anteed to asymptotically find feasible solutions with high-
probabilty while the RRT* algorithm (Karaman and Fraz-
zoli 2010) asymptotically finds the optimal solution. How-
ever, their convergence rate degrades as the dimension of
the joint configuration space increases, as when considering
multiple robots, and they cannot easily find solutions where
robots move in tight spaces. In addition, even approximately
solving some simple problems requires many samples, e.g.,
approximating a shortest path solution for a single robot re-
quired to move between two points with no obstacles (Kara-
man and Frazzoli 2010, see Fig. 1). These methods explore
a continuous space using discrete structures and are differ-
ent from methods that only consider agents that move on a
graph with no concern about their volume or dynamics, e.g.
(Standley and Korf ; Sharon et al. 2013).

An optimization-based approach has been used by sev-
eral authors, including Mellinger, Kushleyev, and Kumar
(2012), who formulate global planning as a mixed-integer
quadratic problem and, for up to four robots, solve it using
branch and bound techniques. Sequential convex program-
ming was used in (Augugliaro, Schoellig, and D’Andrea
2012) to efficiently obtain good local optima for global plan-
ning up to twelve robots. State-of-the-art optimization-based
algorithms for local planning typically have real-time per-
formance and are based on the velocity-obstacle (VO) idea
of (Fiorini and Shiller 1998), which greedily plans paths
only a few seconds into the future and then re-plans. These
methods scale to hundreds of robots. Unlike sampling al-
gorithms, optimization-based methods easily find solutions
where robots move tightly together and solve simple prob-
lems very fast. However, they do not perform as well in
problems involving robots in complex mazes.

Our work builds on the work of Bento et al. (2013), which
formulates multi-agent path planning as a large non-convex
optimization problem and uses proximal algorithms to solve
it. More specifically, the authors use the Alternating Direc-
tion Method of Multipliers (ADMM) and the variant intro-
duced in Derbinsky et al. (2013) called the Three Weight
Algorithm (TWA). These are iterative algorithms that do not
access the objective function directly but indirectly through
multiple (simple) algorithmic blocks called proximal opera-
tors, one per function-term in the objective. At each iteration
these operators can be applied independently and so both the
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TWA and the ADMM are easily parallelized. A brief expla-
nation of this optimization formulation is given in Section
2. A self-contained explanation about proximal algorithms
is found in Parikh and Boyd (2013) and a good review on
the ADMM is Boyd et al. (2011). In general the ADMM
and the TWA are not guaranteed to converge for non-convex
problems. There is some work on solving non-convex prob-
lems using proximal algorithms with guarantees (see Udell
and Boyd 2014 and references in Parikh and Boyd 2013) but
the settings considered are not applicable to the optimization
problem at hand. Nonetheless, the empirical results in Bento
et al. (2013) are very satisfactory. For global planning, their
algorithm scales to many more robots than other optimiza-
tion based methods and finds better solutions than VO-based
methods. Their method also can be implemented in the (use-
ful) form of a decentralized message-passing scheme and
new proximal operators can be easily added or removed to
account for different aspects of planning, such as, richer dy-
namic and obstacle constraints.

The main contributions of Bento et al. (2013) are the prox-
imal operators that enforce no robot-robot collisions and no
robot-wall collisions. These operators involve solving a non-
trivial problem with an infinite number of constraints and a
finite number of variables, also known as a semi-infinite pro-
gramming problem (SIP). The authors solve this SIP prob-
lem only for robots moving in 2D by means of a mechanical
analogy, which unfortunately excludes applications in 3D
such as those involving fleets of unmanned aerial vehicles
(UAVs) or autonomous underwater vehicles (AUVs). An-
other limitation of their work is that it does not allow robots
to automatically select waypoint positions from a set of ref-
erence positions. This is required, for example, in problems
involving robots in formations (Bahceci, Soysal, and Sahin
2003). In Bento et al. (2013), any reference position must be
pre-assigned to a specific robot.

In this paper we propose a solution to these limitations.
Our contributions are (i) we rigorously prove that the SIP
problem involved in collision proximal operators can be re-
duced to solving a single-constraint non-convex problem
that we solve explicitly in arbitrary dimensions and numeri-
cally show our novel approach is substantially faster for 2D
than Bento et al. (2013) and (ii) we derive new proximal op-
erators that automatically assign agents to a subset of refer-
ence positions and penalize non-optimal assignments. Our
contributions have an impact beyond path planning prob-
lems. Other applications in robotics, computer vision or
CAD that can be tackled via large optimization problems
involving collision constraints or the optimal assignment of
objects to positions (e.g. Kuffner et al. 2002; Witkin and
Kass 1988; Andreev, Pavisic, and Raspopovic 2001) might
benefit from our new building blocks (cf. Section 6).

While there is an extensive literature on how to solve SIP
problems (see Stein (2012) for a good review), as far as we
know, previous methods are either too general and, when ap-
plied to our problem, computationally more expensive than
our approach, or too restrictive and thus not applicable.

Finally, we clarify that our paper is not so much about
showing the merits of the framework used in Bento et al.
(2013; a point already made), as it is about overcoming un-

solved critical limitations. However, our numerical results
and supplementary video do confirm that the framework pro-
duces very good results, although there are no guarantees
that the method avoids local minima.

2 Background
Here we review the formulation of Bento et al. (2013) of
path planning as an optimization problem, explain what
proximal operators are, and explain their connection to solv-
ing this optimization problem.

We have p spherical agents in Rd of radius {ri}pi=1. Our
objective is to find collision-free paths {xi(t)}i∈[p],t∈[0,T ]

for all agents between their specified initial positions
{xinit

i }
p
i=1 at time 0 and specified final positions {xfinal

i }
p
i=1

at time T . In the simplest case, we divide time in intervals
of equal length and the path {xi(t)}Tt=0 of agent i∈ [p] is
parametrized by a set of break-points {xi(s)}ηs=0 such that
xi(t)=xi(s) for t=sT/η and all s. Between break-points
agents have zero-acceleration. We discuss the practical im-
pact of this assumption in Appendix ??.

We express global path planning as an optimization prob-
lem with an objective function that is a large sum of simple
cost functions. Each function accounts for a different aspect
of the problem. Using similar notation to Bento et al. (2013),
we need to minimize the objective function∑
i

fpos(xi(0), xiniti )+
∑
i

fpos(xi(η), xfinali )+
∑
i>j,s

(1)

f coll
i,j (xi(s), xi(s+1), xj(s), xj(s+1)) +

∑
i,s

f vel
i (xi(s), xi(s+1))

+
∑
W,i,s

fwall
W (xi(s), xi(s+1)) +

∑
i,s

f dir
i (xi(s), xi(s+1), xi(s+2)).

The function f coll prevents agent-agent collisions: it is
zero if ‖αxi(s)+(1−α)xi(s+1)−(αxj(s)+(1−α)xj(s+
1))‖ ≥ ri+rj for all α ∈ [0, 1] and infinity otherwise. The
fwall function prevents agents from colliding with obstacles:
it is zero if ‖αxi(s) + (1−α)xi(s+ 1)− y‖ ≥ ri for all
α ∈ [0, 1], y ∈ W , where W is a set of points defining an
obstacle, and is infinity otherwise. In Bento et al. (2013),W
is a line between two points xL and xR in the plane and the
summation

∑
W is across a set of obstacles. The functions

f vel and f dir impose restrictions on the velocities and direc-
tion changes of paths. The function f pos imposes boundary
conditions: it is zero if xi(0) = xinit

i (or if xi(η) = xfinal
i ) and

infinity otherwise. The authors also re-implement the local
path planning method of Alonso-Mora et al. (2013), based
on velocity obstacles (Fiorini and Shiller 1998), by solving
an optimization algorithm similar to (1).

Bento et al. (2013) solve (1) using the TWA, a variation of
the ADMM. The ADMM is an iterative algorithm that mini-
mizes objectives that are a sum of many different functions.
The ADMM is guaranteed to solve convex problems, but,
empirically, the ADMM (and the TWA) can find good fea-
sible solutions for large non-convex problems (Derbinsky et
al. 2013; Bento et al. 2013).

Loosely speaking, the ADMM proceeds by passing mes-
sages back and forth between two types of blocks: proximal
operators and consensus operators. First, each function in
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the objective is queried separately by its associated prox-
imal operator to estimate the optimal value of the variables
the function depends on. For example, the proximal operator
associated with f coll

1,2 produces estimates for optimal value of
x1(s), x2(s), x1(s + 1) and x2(s + 1). These estimates are
then sent to the consensus operators. Second, a consensus
value for each variable is produced by its associated con-
sensus operator by combining all the received different es-
timates for the values of the variable that the proximal op-
erators produced. For example, the proximal operators as-
sociated with f coll

1,2 and f vel
1 give two different estimates for

the optimal value of x1(s) and the consensus operator asso-
ciated with x1(s) needs to combine them into a single es-
timate. The consensus estimates produced by the consensus
operators are then communicated back to and used by the
proximal operators to produce new estimates, and the cycle
is repeated until convergence. See Appendix ?? for an illus-
tration of the blocks that solve a problem for two agents.

It is important to be more specific here. Consider a func-
tion f(x) in the objective. From the consensus value for its
variables x, the corresponding consensus nodes form con-
sensus messages n that are sent to the proximal operator as-
sociated with f . The proximal operator then estimates the
optimal value for x as a tradeoff between a solution that is
close to the minimizer of f and one that is close to the con-
sensus information in n (Parikh and Boyd 2013),

x ∈ arg min
x′

f(x′) +
ρ

2
‖x′ − n‖2, (2)

where we use ∈ instead of = to indicate that, for a non-
convex function f , the operator might be one-to-many, in
which case some extra tie-breaking rule needs to be imple-
mented. The variable ρ is a free parameter of the ADMM
that controls this tradeoff and whose value affects its perfor-
mance. In the TWA the performance is improved by dynam-
ically assigning to the ρ’s of the different proximal operators
values in {0, const.,∞} (cf. Appendix ??).

We emphasize that the implementation of these proximal
operators is the crucial inner-loop step of the ADMM/TWA.
For example, when f = f vel takes a quadratic (kinetic en-
ergy) form, the operator (2) has a simple closed-form ex-
pression. However, for f = f coll or f = fwall the operator
involves solving a SIP problem. In Section 3 we explain how
to compute these operators more efficiently and in a more
general setting than in Bento et al. (2013).

3 No-collision proximal operator
Here we study the proximal operator associated with the
function f coll that ensures there is no collision between two
agents of radius r and r′ that move between two consecutive
break-points. We distinguish the variables associated to the
two agents using ’ and distinguish the variables associated
to the two break-points using − and a, respectively. For con-
creteness, just imagine, for example, that x = x1(0), x′ =
x2(0), x = x1(1) and x′ = x2(1) and think of n, n′, n′ and
n′ as the associated received consensus messages. Following
(2), the operator associated to f coll outputs the minimizer of

min
x,x′,x,x′

ρ

2
‖x−n‖2 +

ρ

2
‖x−n‖2 +

ρ′

2
‖x′−n′‖2 +

ρ′

2
‖x′−n′‖2

s.t. ‖α(x− x′)+(1−α)(x−x′)‖ ≥ r+r′, for all α∈[0, 1]. (3)

Our most important contribution here is an efficient pro-
cedure to solve the above semi-infinite programming prob-
lem for agents in arbitrary dimensions by reducing it to a
max-min problem. Concretely, Theorem 1 below shows that
(3) is essentially equivalent to the ‘most costly’ of the prob-
lems in the following family of single-constraint problems
parametrized by α,

min
x,x′,x,x′

ρ

2
‖x−n‖2 +

ρ

2
‖x−n‖2 +

ρ′

2
‖x′−n′‖2 +

ρ′

2
‖x′−n′‖2

s.t. ‖α(x−x′)+(1−α)(x−x′)‖ ≥ r+r′. (4)

Since problem (4) has a simple closed-form solution, we can
solve (3) faster than in Bento et al. (2013) for 2D objects. We
support this claim with numerical results in Section 5. In the
supplementary video we use our new operator to do planning
in 3D and, for illustration purposes, in 4D.
Theorem 1. If ‖α(n−n′) + (1−α)(n−n′)‖ 6= 0, then (4)
has a unique minimizer, x∗(α), and if this condition holds
for α = α∗ ∈ arg maxα′∈[0,1] h(α′), where 2h2(α) is the
minimum value of (4), then x∗(α∗) is also a minimizer of
(3). In addition, if ‖α(n−n′) + (1−α)(n−n′)‖ 6= 0, then

h(α) = max

0,
(r + r′)− ‖α∆n+ (1− α)∆n‖√

α2/ρ˜ + (1− α)2/ρ̃

 , (5)

and the unique minimizer of (4) is

x∗ = n− γρ(α2∆n+ α(1− α)∆n), (6)

x′∗ = n′ + γρ′(α2∆n+ α(1− α)∆n), (7)

x∗ = n− γρ((1− α)α∆n+ (1− α)2∆n), (8)

x′∗ = n′ + γρ′((1− α)α∆n+ (1− α)2∆n), (9)

where ρ˜ = (ρ−1 + ρ′
−1

)−1, ρ̃ = (ρ−1 + ρ′
−1

)−1,

γ = 2λ

1+2λ
√
α2/ρ˜+(1−α)2/ρ̃

, λ = − h(α)

2(r+r′)
√
α2/ρ˜+(1−α)2/ρ̃

,

∆n = n− n′ and ∆n = n− n′.
Remark 2. Under a few conditions, we can use Theorem
1 to find one solution to problem (3) by solving the simpler
problem (4) for a special value of α. In numerical imple-
mentations however, the conditions of Theorem 1 are easy to
satisfy, and the x∗(α∗) obtained is the unique minimizer of
problem (3). We sketch why this is the case in Appendix ??.

In a nutshell, to find one solution to (3) we simply find α∗
by maximizing (5) and then minimize (4) using (6)-(9) with
α = α∗. We can carry both steps efficiently, as shown in
Section 5. The intuition behind Theorem 1 is that if we solve
the optimization problem (3) for the ‘worst’ constraint (the
α∗ that gives largest minimum value), then the solution also
satisfies all other constraints, that is, it holds for all other
α ∈ [0, 1]. We make this precise in the following general
lemma that we use to prove Theorem 1. We denote by ∂i the
derivative of a function with respect to the ith variable. The
proof of this Lemma is in Appendix ?? and that of Theorem
1 is in Appendix ??.
Lemma 3. Let A be a convex set in R, g : Rd × A →
R, (x, α) 7→ g(x, α), be convex in α and continuously dif-
ferentiable in (x, α) and let f : Rd → R, x 7→ f(x),
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be continuously differentiable and have a unique minimizer.
For every α ∈ A, let h(α) denote the minimum value of
minx:g(x,α)≥0 f(x) and if the minimum is attained by some
feasible point let this be denoted by x∗(α). Under these
conditions, if α∗ ∈ arg maxα∈A h(α), and if x∗(α) exists
around a neighborhood of α∗ in A and is differentiable at
α∗, and if ∂1g(x∗(α∗), α∗) 6= 0, then x∗(α∗) minimizes
minx:g(x,α)≥0∀α∈A f(x).

Other collision operators
Using similar ideas to those just described, we now explain
how to efficiently extend to higher dimensions the wall-
agent collision operator that Bento et al. (2013) introduced.
In the supplementary video we use these operators for path
planning with obstacles in 3D.

To avoid a collision between agent 1, of radius r, and a
line between points y1, y2 ∈ Rd, we include the following
constraint in the overall optimization problem: ‖αx1(s) +
(1−α)x1(s+ 1)− (βy1 + (1−β)y2)‖ ≥ r for all α, β ∈
[0, 1] and all s+ 1 ∈ [η + 1]. This constraint is associated
with the proximal operator that receives (n, n′) and finds
(x, x) that minimizes

ρ

2‖x − n‖2 + ρ
2‖x − n‖2 subject to

‖αx+(1−α)x−(βy1+(1−β)y2)‖ ≥ r, for all α, β ∈ [0, 1].
Using ideas very similar to those behind Theorem 1 and
Lemma 3, we solve this problem for dimensions strictly
greater than two by maximizing over α, β ∈ [0, 1] the min-
imum value the single-constraint version of the problem. In
fact, it is easy to generalize Lemma 3 to A ⊂ Rk and the
single-constraint version of this optimization problem can be
obtained from (4) by replacing n′ and n′ with βy1+(1−β)y2,
and letting ρ′, ρ′ → ∞. Thus, we use (5) and (6)-(9) under
this replacement and limit to generalize the line-agent colli-
sion proximal operator of Bento et al. (2013) to dimensions
greater than two. We can also use the same operator to avoid
collisions between agents and a line of thickness ν, by re-
placing r with ν+r.

Unfortunately, we cannot implement a proximal operator
to avoid collisions between an agent and the convex enve-
lope of an arbitrary set of points y1, y2, ..., yq by maximiz-
ing over α, β1, ..., βq−1 ∈ [0, 1] the minimum of the single-
constraint problem obtained from (4) after replacing n′ and
n′ with β1y1+...+βq−2yq−2+(1−β1−...−βq−1)yq , and letting
ρ′, ρ′ → ∞. We can only do so when d > q, otherwise we
observe that the condition ∂1g(x∗(α∗), α∗) 6= 0 of Lemma 3
does not hold and x∗(α∗) is not feasible for the original SIP
problem. In particular, we cannot directly apply our max-
min approach to re-derive the line-agent collision operator
for agents in 2D but only for dimensions ≥ 3. When d ≤ q,
we believe that a similar but more complicated principle can
be applied to solve the original SIP problem. Our intuition
from a few examples is that this involves considering differ-
ent portions of the space A separately, computing extremal
points instead of maximizing and minimizing and choosing
the best feasible solution among these. We will explore this
further in future work.

Speeding up computations
The computational bottleneck for our collision operators is
maximizing (5). Here we describe two scenarios, denoted

as trivial and easy, when we avoid this expensive step to
improve performance.

First notice that one can readily check whether x = n
is a trivial feasible solution. If it is yes, it must be optimal,
because it has 0 cost, and the operator can return it as the
optimal solution. This is the case if the segment from ∆n =
n − n′ to ∆n = n − n′ does not intersect the sphere of
radius r+r′ centered at zero, which is equivalent to ‖α∆n+
(1 − α)∆n‖ ≥ r + r′ with α = max{1,min{0, α′}} and
α′ = ∆n†(∆n−∆n)/‖∆n−∆n‖2.

The second easy case is a shortcut to directly determine if
the maximizer of maxα∈[0,1] h(α) is either 0 or 1. We start
by noting that empirically h has at most one extreme point
in [0, 1] (the curious reader can convince him/herself of this
by plotting h(α) for different values of ∆n and ∆n). This
being the case, if ∂1h(0) > 0 and ∂1h(1) > 0 then α∗ = 1
and if ∂1h(0) < 0 and ∂1h(1) < 0 then α∗ = 0. Evalu-
ating two derivatives of h is much easier than maximizing
h and can save computation time. In particular, ∂1h(0) =
C(−(r + r′) + ‖∆n‖ + (∆n†(∆n − ∆n)/‖∆n‖)) and
∂1h(1) = C ′((r+ r′)−‖∆n‖+ (∆n†(∆n−∆n)/‖∆n‖))
for constants C,C ′ > 0.

If these cases do not hold, we cannot avoid maximizing
(5), a scenario we denote as expensive. In Section 5 we pro-
file how often each scenario occurs in practice and the cor-
responding gain in speed.

Local path planning
The optimization problem (1) finds beginning-to-end
collision-free paths for all agents simultaneously. This is
called global path planning. It is also possible to solve path
planning greedily by solving a sequence of small optimiza-
tion problems, i.e. local path planning. Each of these prob-
lems plans the path of all agents for the next τ seconds
such that, as a group, they get as close as possible to their
final desired positions. This is done, for example, in Fior-
ini and Shiller (1998) and followup work (Alonso-Mora et
al. 2012a; 2013). The authors in Bento et al. (2013) solve
these small optimization problems using a special case of
the no-collision operator we study in Section 3 and show
this approach is computationally competitive with the re-
sults in Alonso-Mora et al. (2013). Therefore, our results
also extend this line of research on local path planning to ar-
bitrary dimensions and improve solving-times even further.
See Section 5 for details on these improvements in speed.

4 Landmark proximal operator
In this section we introduce the concept of landmarks that,
automatically and jointly, (i) produce reference points in
space-time that, as a group, agents should try to visit, (ii)
produce a good assignment between these reference points
and the agents, and (iii) produce collision-free paths for the
agents that are trying to visit points assigned to them.

Points (i) to (iii) are essential, for example, to formation
control in multi-robot systems and autonomous surveillance
or search (Bahceci, Soysal, and Sahin 2003), and are also re-
lated to the problem of assigning tasks to robots, if the tasks
are seen as groups of points to visit (Michael et al. 2008).
Many works focus on only one of these points or treat them
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in isolation. One application where points (i) to (iii) are con-
sidered, although separately, is the problem of using color-
changing robots as pixels in a display (Alonso-Mora et al.
2012b; 2012c; Ratti and Frazzoli 2010). The pixel-robots ar-
rangement is planned frame-by-frame and does not automat-
ically guarantee that the same image part is represented by
the same robots across frames, creating visual artifacts. Our
landmark formalism allows us to penalize these situations.

We introduce landmarks as extra terms in the objective
function (1); we now explain how to compute their associ-
ated proximal operators. Consider a set of landmark trajecto-
ries {yj(s)}j∈[m],sinit≤s≤send and, to each trajectory j, assign
a cost c̃j > 0, which is the cost of ignoring the entire land-
mark trajectory. In addition, to each landmark yj(s) ∈ Rd
that is assigned to an agent, assign a penalty cj(s) > 0 for
deviating from yj(s). Landmark trajectories extend the ob-
jective function (1) by adding to it the following term∑

j:σj 6=∗

send∑
s=sinit

cj(s)‖xσj (s)− yj(s)‖2 +
∑
j:σj=∗

c̃j , (10)

where the variable σj indicates which agent should follow
trajectory j. If σj = ∗, that means trajectory j is unassigned.
Each trajectory can be assigned to at most one agent and
vice-versa, which it must follow throughout its duration. So
we have σj ∈ [p] ∪ {∗} as well as the condition that if
σj = σj′ then either j = j′ or σj = ∗. We optimize the
overall objective function over x and σ. Note that it is not
equally important to follow every point in the trajectory. For
example, by setting some c’s equal to zero we can effectively
deal with trajectories of different lengths, different begin-
nings and ends, and even trajectories with holes. By setting
some of the c’s equal to infinity we impose that, if the trajec-
tory is followed, it must be followed exactly. In (10) we use
the Euclidean metric but other distances can be considered,
even non-convex ones, as long as the resulting proximal op-
erators are easy to compute. Finally, notice that, a priori, we
do not need {yj(s)} to describe collision free trajectories.
The other terms in the overall objective function will try to
enforce no-collision constraints and additional dynamic con-
straints. Of course, if we try to satisfy an unreasonable set of
path specifications, the ADMM or TWA might not converge.

The proximal operator associated to term (10) receives as
input {ni(s)} and outputs {x∗i (s)} where i ∈ [p], sinit ≤
s ≤ send and {x∗i (s)} minimizes

min
x,σ

∑
j:σj 6=∗

send∑
s=sinit

cj(s)‖xσj (s)− yj(s)‖2 +
∑
j:σj=∗

c̃j

+

p∑
i=1

send∑
s=sinit

ρi
2
‖xi(s)− ni(s)‖2. (11)

The variables σ’s are used only internally in the computa-
tion of the proximal operator because they are not shared
with other terms in the overall objective function. The above
proximal operator can be efficiently computed as follows.
We first optimize (11) over the x’s as a function of σ and
then we optimize the resulting expression over the σ’s. If
we optimize over the x’s we obtain

∑
j ωj,σj

where, if
σj = ∗, ωj,∗ = c̃j and, if σj = i 6= ∗, then ωj,i =

minx
∑send
s=sinit

cj(s)‖xi(s) − yj‖2 + ρi
2 ‖xi(s) − ni(s)‖

2 =∑send
s=sinit

ρicj(s)
2cj(s)+ρi

‖ni(s) − yj(s)‖2. The last equality fol-
lows from solving a simple quadratic problem. We can op-
timize over the σ’s by solving a linear assignment prob-
lem with cost matrix ω, which can be done, for example,
using Hungarian method of Kuhn (1955), using more ad-
vanced methods such as those after Goldberg and Tarjan
(1988), or using scalable but sub-optimal algorithms as in
Bertsekas (1988). Once an optimal σ∗ is found, the output
of the operator can be computed as follows. If i is such that
{j : σ∗j=i}= ∅ then x∗i (s) = ni(s) for all sinit ≤ s ≤ send

and if i is such that i = σj for some j ∈ [m] then x∗i (s) =
(ρini(s)+2ci(s)yj(s))/(2ci(s)+ρi) for all sinit ≤ s ≤ send.

The term (10) corresponds to a set of trajectories between
break-points s = sinit and s = send for which the different
agents must compete, that is, each agent can follow at most
one trajectory. We might however want to allow an agent
to be assigned to and cover multiple landmark trajectories.
One immediate way of doing so is by adding more terms
of the form (10) to the overall objective function such that
the kth term has all its m(k) trajectories within the inter-
val [s

(k)
init , s

(k)
end ], and different intervals for different k’s are

disjoint. However, just doing this does not allow us to im-
pose a constraint like the following: “the jth trajectory in
the set corresponding to the interval [s

(k)
init , s

(k)
end ] must be cov-

ered by the same agent as the the (j′)th trajectory in the
set corresponding to the interval [s

(k+1)
init , s

(k+1)
end ].” To do so

we need to impose the additional constraint that some of
the σ(k) variables across different terms of the form (10)
are the same, e.g. in the previous example, σ(s)

j = σ
(s+1)
j′ .

Since the variables σ’s can now be shared across different
terms, the proximal operator (11) needs to change. Now it
receives as input a set of values {ni(s)}s,i and {n′j}j and
outputs a set of values {x∗i (s)}i,s and {σ∗j }j that minimize∑
j:σj 6=∗

∑send
s=sinit

cj(s)‖xσj
(s) − yj(s)‖2 +

∑
j:σj=∗ c̃j +∑

i,s
ρi
2 ‖xi(s)−ni(s)‖

2 +
∑m
j=1

ρ′j
2 ‖σj−n

′
j‖2.

In the expression above, {σj}j and {n′j}j are both vectors
of length p + 1, where the last component encodes for no
assignment and σj must be binary with only one 1 entry.
For example, if p = 5 and σ2 = [0, 0, 1, 0, 0, 0] we mean
that the second trajectory is assigned to the third agent, or
if σ4 = [0, 0, 0, 0, 0, 1] we mean that the fourth trajectory is
not assigned to any agent. However, n′ can have real values
and several nonzero components.

We also solve the problem above by first optimizing over
x and then over σ. Optimizing over x we obtain

∑
j ω̃j,σj

,

where ω̃j,i = ωj,i+
ρ′j
2 ‖[0, ...0, 1, 0, ..., 0]−n′j‖2 = ωj,i+

ρ′j
2 ‖n

′
j‖2+‖1−n

′(i)
j ‖2−‖n

′(i)
j ‖2 = ωj,i+

ρ′j
2 ‖n

′
j‖2+1−2n

′(i)
j .

Given the cost matrix ω̃, we find the optimal σ∗ by solving
a linear assignment problem. Given σ∗, we compute the op-
timal x∗ using exactly the same expressions as for (11).

Finally, to include constraints of the kind σ(k)
j = σ

(k′)
j′

we add to the objective a term that takes the value infinity
whenever the constraint is violated and zero otherwise. This
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term is associated with a proximal operator that receives as
input n′j = (n

′(1)
j , ..., n

′(n)
j ) and n′j′ = (n

′(1)
j′ , ..., n

′(n)
j′ ) and

outputs (σ∗j , σ
∗
j′) ∈ arg minσj=σj′

ρj
2 ‖σj−n

′
j‖2+

ρ′
j′

2 ‖σj′−
n′j′‖2. Again σj and σj′ are binary vectors of length p + 1
with exactly one non-zero entry. The solution has the form
σ∗j = σ∗j′ = [0, 0, ..., 0, 1, 0, ...0] where the 1 is in position

i∗ = arg maxi∈[p] ρjn
′(i)
j + ρ′j′n

′(i)
j′ .

5 Numerical experiments
We gathered all results with a Java implementation of the
ADMM and the TWA as described in Bento et al. (2013;
see Appendix ??) using JDK7 and Ubuntu v12.04 run on a
desktop machine with 2.4GHz cores.

We first compare the speed of the implementation of the
collision operator as described in this paper, which we shall
refer to as “NEW,” with the implementation described in
Bento et al. (2013), which we denote “OLD.” We run the
TWA using OLD on the 2D scenario called “CONF1” in
Bento et al. (2013) with p = 8 agents of radius r = 0.918,
equally spaced around a circle of radius R = 3, each re-
quired to exchange position with the corresponding antipo-
dal agent (cf. Fig. 1-(a)). While running the TWA using
OLD, we record the trace of all n variables input into the
OLD operators. We compare the execution speed of OLD
and NEW on this trace of inputs, after segmenting the n
variables into trivial, easy, or expensive according to §3. For
global planning, the distribution of trivial, easy, expensive
inputs is {0.814, 0.001, 0.185}. Although the expensive in-
puts are infrequent, the total wall-clock time that NEW takes
to process them is 76 msec compared to 54 msec to pro-
cess all trivial and easy inputs. By comparison, OLD takes
a total time of 551 msec on the expensive inputs and so our
new implementation yields an average speedup of 7.25× on
the inputs that are most expensive to process. Similarly, we
collect the trace of the n variables input into the collision
operator when using the local planning method described
in Bento et al. (2013) on this same scenario. We observe
a distribution of the trivial, easy, expensive inputs equal to
{0.597, 0.121, 0.282}, we get a total time spent in the easy
and trivial cases of 340 msec for NEW and a total time spent
in the expensive cases of 2802 msec for NEW and 24157
msec for OLD. This is an average speedup of 8.62× on the
expensive inputs. For other scenarios, we observe similar
speedup on the expensive inputs, although scenarios easier
than CONF1 normally have fewer expensive inputs. E.g., if
the initial and final positions are chosen at random instead of
according to CONF1, this distribution is {0.968, 0, 0.032}.

Figure 1-(b) shows the convergence time for instances of
CONF1 in 3D (see Fig. 1-(a)) using NEW for a different
number of agents using both the ADMM and the TWA. We
recall that OLD cannot be applied to agents in 3D. Our re-
sults are similar to those in Bento et al. (2013) for 2D: (i)
convergence time seems to grow polynomially with p; (ii)
the TWA is faster than the ADMM; and, (iii) the proxi-
mal operators lend themselves to parallelism, and thus added
cores decrease time (we see ∼ 2× with 8 cores). In Figure
1-(c) we show that the paths found when the TWA solves

CONF1 in 3D over 1000 random initializations are not very
different and seem to be good (in terms of objective value).
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Figure 1: (a) CONF1-2D & 3D; (b) Convergence time for
CONF1-3D for a varying number of cores and agents; (c)
Empirical distribution of the objective over 1000 random ini-
tializations of TWA for CONF1-3D.

In the supplementary movie we demonstrate the use of the
landmark operators. First we show the use of these operators
on six toy problems involving two agents and four landmark
trajectories where we can use intuition to determine if the so-
lutions found are good or bad. We solve these six scenarios
using the ADMM with 100 different random initializations
to avoid local minima and reliably find very good solutions.
With 1 core it always takes less than 3 seconds to converge
and typically less than 1 second. We also solve a more com-
plex problem involving 10 agents and about 100 landmarks
whose solution is a ‘movie’ where the different robots act
as pixels. With our landmark operators we do not have to
pre-assign the robots to the pixels in each frame.

6 Conclusion
We introduced two novel proximal operators that allow
the use of proximal algorithms to plan paths for agents in
3D, 4D, etc. and also to automatically assign waypoints to
agents. The growing interest in coordinating large swarms
of quadcopters in formation, for example, illustrates the im-
portance of both extensions. For agents in 2D, our collision
operator is substantially faster than its predecessor. In par-
ticular, it leads to an implementation of the velocity-obstacle
local planning method that is faster than its implementation
in both Alonso-Mora et al. (2013) and Bento et al. (2013).
The impact of our work goes beyond path planning. We are
currently working on two other projects that use our results.
One is related to visual tracking of multiple non-colliding
large objects and the other is related to the optimal design of
layouts, such as for electronic circuits. In the first, the speed
of the new no-collision operator is crucial to achieve real-
time performance and in the second we apply Lemma 3 to
derive no-collision operators for non-circular objects.

The proximal algorithms used can get stuck in local min-
ima, although empirically we find good solutions even for
hard instances with very few or no random re-initializations.
Future work might explore improving robustness, possibly
by adding a simple method to start the TWA or the ADMM
from a ‘good’ initial point. Finally, it would be valuable to
implement wall-agent collision proximal operators that are
more general than what we describe in Section 3, perhaps
by exploring other methods to solve SIP problems.
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