A Multi-Domain Evaluation of Scaling
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Motivation

Prior work has provided evidence that cognitive
systems with episodic memory can be...

— more capable in problem solving

— better able to account for human psychological
phenomena

— more believable as virtual characters and companions

Limitations of current approaches:
— Restricted representation
— Task-specific processing
— Little evaluation of real-time use in long-term tasks



Multi-Domain Evaluation of Scaling

Episodic memory in Soar [Laird, 2012]

— Relational representation, task-independent integration

Existing agents from many diverse tasks (49)

— Linguistics, planning, games, robotics

Long agent runs
— Hours-days [cognitive] RT
(10,000s — 100,000,000s episodes)

Evaluate at each n episodes
— Memory consumption
— Reactivity for >100 task-relevant cues

* Maximum time for cue matching <’ 50 msec.

Cognitive Capabilities
Virtual Sensing

Detecting Repetition
Action Modeling

Environmental Modeling
Explaining Behavior
Managing LT Goals

Predicting Success/Failure



Outline

1. Overview of episodic memory in Soar

2. Evaluation domains’
a) Word sense disambiguation
b) Video games & robotics

"See paper/poster for results of using Soar’s episodic memory
for repeated-state detection in 44 PDDL planning domains.



Episodic Memory in Soar
Problem Formulation

Representation EP'SOd'C Memory Matching
e Episode: connected di-graph
e Store: temporal sequence
t Storage
Encoding/Storage '
e Automatic @—_}
e No dynamics
t Encoding '
Cue Matching - ~
| : Working Memory
e Cue: acyclic graph > Cue
e Semantics: desired features in context

e Find the most recent episode that

shares the most leaf nodes in common
with the cue \

/
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Episodic Memory in Soar
Algorithmic Overview

Storage (only process changes)

— Capture WM-changes (A’s) as temporal intervals

Cue Matching (reverse walk of cue-relevant A’s)
— 2-phase search

* Only graph-match episodes that have all cue features
independently

— Only evaluate episodes in which cue features change
— Incrementally re-score episodes



Episodic Memory in Soar
Storage Characterization
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Episodic Memory in Soar
Cue-Matching Characterization

Assumptions
— Few changes per episode (temporal contiguity)
— Representational re-use (structural reqularity)
— Small cue

Scaling

— Search distance (# changes to walk)
* Temporal Selectivity: how often does a feature change
* Feature Co-Occurrence: how often do features co-occur within a
single episode
— Episode scoring

e Structural Selectivity: how many ways can a cue feature match an
episode feature



Word Sense Disambiguation
Experimental Setup

* |nput: <“word”, POS>; Output: sense #; Result
— SemCor (~900K eps/exposure) x 5 (~4.5M episodes)

* Agent

— Maintain context as n-gram: < w,_;, W,,, ... W, , >

— Query episodic memory for context

* If success, examine prior result, output

* If failure, null y Exposure #1 Exposure #2
DR 1457% 92.82%
| 3-gram  NPETE 99.47%
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Word Sense Disambiguation
Results

Storage
— Avg. 234 bytes/episode
— Max. <1 msec.

Cue Matching
— All 1-, 2-, and 3-gram cues reactive (<50 msec.)
— 0.2% of 4-grams exceed 50 msec.



Word Sense Disambiguation

N-gram Cue-Matching Scaling
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Video Games & Mobile Robotics

Experimental Setup

TankSoar mapping-bot
Eaters advanced-move 3.5M 50K
Infinite Mario [Mohan & Laird ‘11] 3.5M 50K

Mobile Robotics  [Laird, Derbinsky & Voigt ‘11] 108 M 300K

Hand-coded cues (per domain)
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Summary of Results

Generality
— Evaluated numerous agents in 49 diverse problem domains
— Episodic cues to support a variety of cognitive capabilities

Reactivity
— <50 msec. storage for all tasks (except temporal discontiguity)
— <50 msec. cue matching for many cues

Scalability

— No growth in cue matching for many cues (days!)
» Validated predictive performance models

— 0.11 - 5.5 kb/episode (days — months)



Thank You :)

Questions?



