

A Multi-Domain Evaluation of Scaling in a General Episodic Memory

Nate Derbinsky, Justin Li, John E. Laird

University of Michigan

RESEARCH QUESTION

To what extent is Soar's episodic memory effective and efficient for real-time agents that persist for long periods of time across a variety of tasks?

Approach: Multi-Domain Evaluation

- Existing agents, diverse tasks (49)
- Long runs (hours-days; 10⁵-10⁸ episodes)
- Evaluate at every X episodes: memory, max. cue-matching time (>100 taskrelevant cues, 7 general capabilities)

AGENT INTEGRATION

The Soar cognitive architecture

Episodic operations:

Representation

- Episode: connected di-graph
- Store: temporal sequence

Automatic, no dynamics (e.g. forgetting)

Cue Matching

- Cue: acyclic di-graph
- Find the most recent episode that shares the most leaf nodes in common with cue

ALGORITHMIC OVERVIEW

Storage Encode WM-changes (Δ's)

as temporal intervals in novel dynamic-graph index

Cue Matching Reverse temporal walk of cue-relevant Δ's

- 2-phase search: only graph-match episodes that have all cue features independently
- Only evaluate episodes that have changes relevant to cue features via priority queue of b+-tree pointers
- Incrementally re-score episodes via novel dynamic discrimination network

STORAGE CHARACTERIZATION

Memory scales linearly with Δ's

RETRIEVAL CHARACTERIZATION

Assumptions

- **Temporal Contiguity** Few changes per episode
- **Structural Regularity** Representational re-use
- Small cues (relative to state size)

Scaling Parameters (w.r.t. cue features)

- Search distance
 - Temporal Selectivity: Δ frequency
 - **Co-Occurrence**: related to | state space |
- **Episode scoring**
- Structural Selectivity: how many ways can cue unify with episode

WORD SENSE DISAMBIGUATION

Experimental Setup

- Input: <"word", POS> + result
 - Corpus: SemCor
- Output: sense <----
- · Agent: maintain context as n-gram
 - on input, query EpMem for context -> if success, output next result

<u>Accuracy</u>	Trial #1	Trial #2
2-gram	14.57%	92.82%
3-gram	2.32%	99.47%

Results

- Storage: 234 bytes/ep. (avg)
- Cue-Matching
- All 1-, 2-, 3-grams <50 msec.
- 0.2% of 4-grams exceed 50 msec.

Retrieval Time (msec) vs. Episodes (x1000)

PLANNING

Experimental Setup

- 12 domains converted from PDDL
 - Logistics, Blocksworld, Grid, ...
- 44 problem instances (e.g. # blocks)
- Agent: randomly explore state space
- 50K episodes, measure every 1K

Results

- Storage:
- Time: <12.04 msec./ep.
- Memory: 562-5454 bytes/ep.
- Cue-Matching (time <50 msec.)
- 1. Full State: 12 smallest-state domains
- 2. Relational: no domains
- 3. Schema: all domains (max 0.08 msec.)

VIDEO GAMES & MOBILE ROBOTICS

Hand-coded cues (per domain)

SUMMARY OF RESULTS

Storage

- <50 msec./episode (except in Mario due to temporal discontiguity)
- 0.18 4 kb/episode (days months)

- <50 msec. cue matching for many cues
- No cue-matching time growth