Effective and Efficient Memory for Generally Intelligent Agents Nate Derbinsky

Visiting Research Associate @ U. Hertfordshire with: Kerstin Dautenhahn

Research Fellow @ U. Michigan with: John E. Laird

September: PostDoc @ Disney Research-Boston

with: Jonathan Yedidia

My Long-Term Research Goal General Intelligence

Agents that persist for long periods of time, exhibiting robust and adaptive behavior in a variety of tasks and situations.

Inspiration from Humans: Memory

Class of mechanism to cope with dynamic, partially-observable environment

- Encodes experience
- Stores internally
- Supports retrieval

Without memory, agents are reactive, stuck in the here and now

Prior Work: Benefits of Memory

More capable in problem solving

- Individually (e.g. Nuxoll & Laird, 2012)
- Collaboratively (e.g. Deutsch et al., 2008)

Better modeling of human cognition

- Language learning (e.g. Ball et al., 2010)
- Memory blending (e.g. Brom et al., 2010)

More believable

- Virtual characters (e.g. Gomes et al., 2011)
- Long-term companions (e.g. Lim et al., 2011)

Computational Challenge of Memory

How to maintain <u>effective</u> and <u>efficient</u> access to large amounts of knowledge as it accumulates over long periods of time.

Limitations of current approaches...

- task-specific,(e.g. Macedo & Cardoso, 2004)
- restricted representation, and/or (e.g. Tecuci & Porter, 2007; 2009)
- do not scale to large amounts of experience
 (e.g. Kuppuswamy et al., 2006; Douglass et al., 2009)

This Work *Effective and Efficient Memory*

<u>Desiderata</u>

- Generality: effective across a variety of tasks
- Reactivity: decisions < 50 milliseconds</p>
- Scalability: support large amounts of knowledge

Outline

Cognitive Architecture

Specification of those aspects of cognition that remain constant across the lifetime of an agent

- Memory systems of agent's beliefs, goals, experience
- Knowledge representation
- Functional processes that lead to behavior
- Learning mechanisms

Goal. Develop and understand intelligence across a diverse set of tasks and domains

Research Focus

Biological Plausibility

Leabra

Psychological Plausibility

ACT-R CLARION EPIC

Agent Functionality

Companions
ICARUS
LIDA
Graphical
Soar

Soar (Laird, 2012)

Memory Integration

Soar LT Memory Access

This Work

Episodic Memory

Long-term, contextualized store of specific events (Tulving, 1983)

Episodic Memory

Problem Formulation

Representation

• Episode: connected di-graph

• Store: temporal sequence

Encoding/Storage

- Automatic
- No dynamics

Retrieval

- Cue: acyclic graph
- Semantics: desired features in context
- Find the most recent episode that shares the most leaf nodes in common with the cue

Episodic Memory Computational Challenges

Arbitrary, dynamic state

Scaling potential, agent...

- state (1000s nodes/edges)
- life (10^6-10^9) episodes ~ days)

Cue-matching optimality

- Constrained subgraph isomorphism (NP-complete)
- Search: O(# episodes)

Analysis & Algorithms [ICCBR '09], [AAMAS '12]

Properties

- Temporal Contiguity
 |state changes| << |state|
- Structural Regularity
 |distinct structures| << |all experienced structures|</pre>

Algorithms

- Storage: dynamic graph index*
- Cue Matching: 2-phase search*
- Reconstruction: relational interval tree (Kriegel et al. 2000)

Dynamic Graph Index

2-Phase Cue Matching

1. Surface

- a) Identify cue-feature changes via ordered interval-walking algorithm
 - Priority queue of b+-tree pointers
 - b) Incrementally score features independently
 - Discrimination network (DNF Graph)

2. Structure

a) Graph match + standard heuristics (e.g. MCV)

13 June 2012

Empirical Evaluation [AAAI '12a]

Performance Characterization

- Temporal Selectivity + Co-Occurrence
 O(Search Distance)
- Structural Selectivity
 O(Episode Hyper-edges)

Empirical Evaluation

• 49 domains: WSD, planning, robotics, games

• 10^5 - 10^8 episodes ~ days of real time, >100 cues

Data: Eaters

Data: TankSoar

Evaluation Results

Generality

- Demonstrated 7 cognitive capabilities
 - Virtual sensing, action modeling, long-term goal management, ...

Reactivity

- <50 msec. storage time for all tasks (ex. temporal discontiguity)
- <50 msec. cue matching for many cues</p>

Scalability

- No growth in cue matching for many cues (days!)
 - Validated predictive performance models
- 0.18 4 kb/episode (days months)

- Algorithms that are <u>reactive</u> and <u>scalable</u> for many tasks and cues
- <u>Performance characterization</u> w.r.t. general properties of environments, tasks, and agents
- Demonstrated <u>useful</u> capabilities in a variety of problem domains

Semantic Memory

Long-term store of general facts and relations about the world, independent of the context in which they were originally learned

Agent Benefits

- Access to large KBs
- Retrieval bias as a reasoning heuristic

Semantic Memory Problem Formulation

Representation

• Directed graph

Encoding/Storage

- Incremental
- Deliberate

Retrieval

13 June 2012

- Cue: set of features/relations
- Semantics: subset query
- Single result, ranked by bias value [#]

Example cue:

last(obama), spouse(X)

Semantic Memory Computational Challenges

Dynamic...

- number of nodes/edges
- symbol vocabulary

Scaling potential

- Nodes ~ millions
- Edges ~ 10 per node

Cue-matching optimality

- Feature satisfaction, ranking w.r.t. bias value
- O(|cue| x |objects|)

Retrieval Latency: Chunks in DM x Retrieval Constraints x Type of DM (Error Bars: 95% Confidence Interval)

Analysis & Algorithms [ICCM '10], [AAAI '11]

Properties

Object Cardinality
 Few objects with large # of features/relations

Algorithms

- **Storage**: incremental inverted index (b+ trees) (Zobel and Moffat, 2006)
- Cue Matching:
 - Statistical query optimization (Chaudhuri, 1998)
 - Hybrid ranking via locally efficient bias functions*

Example Semantic Knowledge

Semantic Objects: Features

Inverted Indexing

Semantic Objects: Features

Feature Statistics

Semantic Objects: Features

Non-Biased Retrieval Algorithm

Introducing Bias

Semantic Objects: Features

Biased Retrieval Algorithm #1 Sort on Query

Biased Retrieval Algorithm #2 Static Sort

Inverted Index

Biased Retrieval Algorithm #2 Static Sort

Inverted Index

Our Hybrid Approach

Empirically supported cardinality threshold, θ

```
If (cardinality > \theta): Sort on Query [#1]
```

 Candidate enumeration scales with # of objects with large cardinality (which should be rare)

```
If (cardinality \leq \theta): Static Sort [#2]
```

- Bias updates must be locally efficient
 - Objects affected: O(1)
 - Computation: O(1)

Empirical Evaluation [ICCM '10], [AAAI '11]

Performance Characterization

Selectivity + Co-occurrence
 O(Failed Candidates)

Empirical Evaluation

- Synthetic: efficiency/scaling of cue matching
- WSD: efficiency/usefulness of biased retrievals

Synthetic Evaluation

- Scaling parameter: k
- Nodes = k!, Edges = [k+1]!

Synthetic Evaluation

Scaling parameter: k 7: 5k 8: 40k 10: 3.6M 9:360k **3MB 28MB** 292MB 2GB Nodes = k!, Edges = [k+1]!WordNet 0.5 820K, |cue|=7 Retrieval Time (msec) 0.4 0.3 0.2 0.1 >100x faster than DBMS: >3x data + bias 0 (Douglass et al., '09) 6 2 1 3 4 5 11 **Cue Constr**

WSD Evaluation *Motivation*

Problem. Ambiguous Cues
Hypothesis. Retrieval History is Useful
Application. Word Sense Disambiguation

WSD Evaluation Historical Memory Retrieval Bias

Experimental Setup

Input: "word", POS

Given: WordNet v3

Correct sense(s) after each attempt

Efficiency & Scaling

- R/DF: O(1), ≤ 0.87 msec.
- Base-Level Activation:
 - Naïve: O(# obj's), ≤ 13.25 msec.
 - Locally Efficient Approximation: O(1), ≤ 1.34 msec.

■ SemCor ■ Senseval-2 ■ Senseval-3

 Algorithms that are <u>reactive</u> and <u>scalable</u> for real tasks and KBs

- <u>Performance characterization</u> w.r.t. general properties of environments, tasks, and agents
- Bias functions that are <u>efficient</u>, <u>scalable</u>, and <u>useful</u> for heuristic reasoning

Forgetting

Problem. Extended tasks that involve learning large amounts of knowledge can lead to performance degradation in existing systems (e.g. Kennedy & Trafton, 2007).

Approach. Selectively retain learned knowledge.

Challenge. Balance...

- maintenance of high task performance
- reduction of computational resources across a variety of tasks.

Approach

Hypothesis. Rational to forget a memory if...

- 1. not useful (via base-level activation) &
- 2. likely can reconstruct if necessary

Evaluation. 2 complex tasks, 2 memories

Mobile Robot Navigation

Working Memory

- bounds decision time
- completes task
 - > 1 hour

Multi-Player Dice

Procedural Memory

- 50% memory reduction
- competitive play
 - > days

Task Independent

Base-Level Decay

(Anderson et al., 2004)

Predict future usage via history Used to model human retrieval bias, errors, and forgetting via failure

Binary parameter search

O(# memories)

Task #1: Mobile Robotics

Simulated Exploration & Patrol

- 3rd floor, BBB Building, UM
 - 110 rooms
 - 100 doorways
- Builds map in memory from experience

13 June 2012

Effective and Efficient Memory for Generally Intelligent Agents

Problem: Decision Time

Issue. Large working memory

- Minor: rule matching (Forgy, 1982)
- Major: episodic reconstruction
 - |episode|~|working memory|

Forgetting Policy. Memory hierarchy

- 1. Forget unused short-term features of long-term objects
- 2. Retrieve from SMem as necessary

Task Independent

Map Knowledge

Room Features

- Position, size
- Walls, doorways
- Objects
- Waypoints

Usage

- Exploration (-->SMem)
- Planning/navigation (<--SMem)
 <p>Reconstruction

Results: Working-Memory Size

Results: Decision Time

Task #2: Liar's Dice

- Complex rules, hidden state, stochasticity
 - Rampant uncertainty

- Agent learns via reinforcement learning (RL)
 - Large state space (10⁶-10⁹ for 2-4 players)

Reasoning --> Action Knowledge

Problem: Memory Consumption

Issue. RL value-function representation: (s,a)->#

- Soar: procedural knowledge (RL rules)
- Many possible actions per turn;
 at most feedback for a single action

Forgetting Policy. Keep what you can't reconstruct

- 1. Forget unused RL rules that have not been rewarded
- 2. Learn rules via reasoning as necessary ("chunking")

Forgetting Action Knowledge

Results: Memory Usage

Results: Competence

- Explored common forgetting hypothesis in two memories, two complex tasks
- Developed <u>efficient</u> and <u>correct</u> method of forgetting via base-level activation model
- Improves <u>reactivity</u> and <u>scaling</u> for long lifetimes and large amounts of knowledge, with <u>high task</u> <u>performance</u>

Summary

- Analysis. Properties of Environment, Task, Agent
 - Algorithms: Efficient, Scalable, Task-Independent
- **Integration**. Soar v9.3.2
- Evaluation.

Demonstration of Agent Benefits

Work @ UH

Making Memories in the Robot House

- Effective uses
 - Increase robot autonomy
 - Improve user trust
- Learning opportunities
 - User schedule, activities, preferences, ...
- Scaling challenges
 - Real-time learning
 - Long-term HRI (months-years!)

Thank You:) Questions?

