

Effective Scaling of Long-term Memory for Reactive Rule-based Agents

Nate Derbinsky, Ph.D. (ABD)

Computer Scientist

University of Michigan

Intelligent Agents

- Autonomous, Persistent
- Observes and acts upon an environment
- Uses and learns knowledge
- Directs activity towards achieving goals

25 October 2011

Example: Ground Robotics

Environment

- Multiple terrains, other agents, weather
- Movement, obstructions

Tasks

- Patrols, search-and-rescue, exploration, experiments, ...
- Terrain, topological relations, traffic patterns, ...

Agent

- Days years
- Autonomy and interaction with other agents, handlers

Scenario #1

25 October 2011

Scenario #2

25 October 2011

A Common Problem

Agents need <u>effective</u> access to diverse information

Factual

Experiential

Agents need to maintain real-time reactivity in dynamic environments

< 50 msec.

Approach: RBS

Rules

Combinatorial set of possible conditions

Working Memory

Match time scales with WM size

25 October 2011

Approach: Remote Search

Factual

Approach: Remote Search

Experiential

Long-Term Memory (LTM)

Class of mechanism to help agents cope with dynamic, partially-observable environments

- Encodes experience
- Stores internally
- Supports retrieval

An Interesting Dichotomy: Stored Context

Semantic

"knowing"

Episodic

"remembering"

Agents with LTM are functionally enhanced across a variety of problems

The Problem LTM for Reactive Agents

Support...

- incremental encoding and storage of experience
- access to stored knowledge

Requirements

- Reactivity: decisions < 50msec.
- Scalability: support large amounts of knowledge
- Generality: effective across a variety of tasks

This Work

Development and evaluation of two LTMs

- Integration within the Soar cognitive architecture
- Efficient algorithms and data structures
- Formal analysis & empirical evaluation

<u>Claims</u>

- Effective and efficient across a variety of tasks
- Scale computationally to...
 - Large amounts of knowledge
 - Long agent lifetimes

Outline

Cognitive Architecture

Semantic Memory

Episodic Memory

Cognitive Architecture

Specification of those aspects of cognition that remain constant across the lifetime of an agent

- Memory systems of agent's beliefs, goals, experience
- Knowledge representation
- Functional processes that lead to behavior
- Learning mechanisms

Goal. Develop and understand intelligence across a diverse set of tasks and domains

Research Focus

Biological Plausibility

Leabra

Psychological Plausibility

ACT-R CLARION EPIC

Agent Functionality

Companions
ICARUS
LIDA
Graphical
Soar

Soar: Distinctive Characteristics [Laird, Newell, Rosenbloom 1987]

- Diverse processing and learning mechanisms that support general problem solving methods
- Efficiently brings to bear large amounts of knowledge
- Applied to many application domains
 - Language, cognitive modeling, games, tactics, robotics, ...
- Public distribution and documentation
 - Major operating systems (Windows, OS X, Linux, iOS)
 - Many languages (C++, Java, Python)

Soar: Comparison to RBS Processing

Soar: Comparison to RBS Processing

- Operators: basic unit of deliberation
 - Explicitly represent current operator
- Rules contain knowledge that
 - Propose Operators: what is possible?
 - Evaluate Operators: what is preferred?
 - Apply Operator: modify working memory
- All rules that match fire in parallel

Soar: Architecture Focus on Memory

25 October 2011

Soar: Memory Access

The reactivity of a Soar agent is the time required to make a decision, which includes accessing and modifying long-term memories

Soar: Memory Evaluation

Metrics

Domains

Memory Usage

Linguistics

Max Decision Time

Mobile Robotics

Task Performance

Games

Semantic Memory Functional Analysis

- Access to large KBs
- Retrieval bias as a reasoning heuristic

SUMO

- Ontology
- 4.5K classes, 250K facts

WordNet

- Lexicon
- 212K senses, 820K assertions

Cyc

- "Common Sense"
- 500K concepts, 5M facts

Semantic Memory Integration

Representation

Symbolic triples

Encoding

• Deliberate

Cue Semantics

• Feature subset

Efficient Implementation – [ICCM '10; AAAI '11]

Mapping to Set-Valued Stores

- Incremental inverted index
- Statistical query optimization
- Heuristic search

Locally Efficient Bias Functions

- Computation takes O(1) time, affects O(1) memories
- Class includes f(useful historical properties)

Empirical Evaluation – [ICCM '10]

Synthetic Scaling Study

Empirical Evaluation – [ICCM '10]

Synthetic Scaling Study

- Scaling parameter: k
- Nodes = k!, Edges = [k+1]!

Empirical Evaluation – [ICCM '10]

Synthetic Scaling Study

- Scaling parameter: k
- Nodes = k!, Edges = [k+1]!

Empirical Evaluation – [ICCM '10]

Lexicon Queries: WordNet

[Douglass et al. 2009]

Experimental Setup

- 10 random nouns
- Full sense (7 feat's)
- 10 trials

Results

 \leq 0.3 msec (σ =0.0108)

>100x faster

>3x more data

Empirical Evaluation – [AAAI '11]

<u>Agent</u>

Problem. Ambiguous Cues
Hypothesis. Retrieval History is Useful
Application. Word Sense Disambiguation

Empirical Evaluation – [AAAI '11]

Word Sense Disambiguation

Task Performance (2 corpus exp.)

Experimental Setup

Input: "word", POS

Given: WordNet v3

Correct sense(s) after each attempt

Efficiency

≤ 1.34 msec

Empirical Evaluation – [BRIMS '11]

Mobile Robotics

- Incremental map learning
- Navigation and planning

Map in Working Memory

Map in Semantic Memory (< 1MB)

Semantic Memory Summary

Reactivity

 More than an order of magnitude faster than reactivity requirement in practice

Scalability

- Synthetic: millions of objects
- WordNet: >820K objects

Generality

• Useful in linguistics and robotics

Episodic Memory Humans

Long-term, contextualized store of specific events [Tulving 1983]

What you "remember" vs. what you "know"

Episodic Memory

Functional Analysis

25 October 2011

Episodic Memory

Integration

Representation

- Episode: connected di-graph
- Store: temporal sequence

Encoding

Automatic

Cue Semantics

- Partial graph-match
- Recency biased

Episodic Memory

Efficient Implementation – [ICCBR '09]

Temporal Contiguity

- Interval-based representation, encoding, search, and reconstruction
- Scale with state changes (discrete edge +/-)

Structural Regularity

- Temporally-global structure index
- Scale with structural distinctions

Efficient Encoding & Storage Incremental Dynamic-Graph Index

Efficient Retrieval Overview

Cue matching is a constrained form of subgraph isomorphism

Unify two rooted graphs with labeled edges

We utilize 2-phase matching to avoid expensive search [Forbus, Gentner, Law 1995]

- Surface: novel search algorithm (interval walk), discrimination network (DNF graph)
- Structure: standard heuristics (MCV, DFS)

Efficient Retrieval

Retrieval Algorithms

Efficient Retrieval Surface Match Data Structures

1. Interval Walk

- Maintain interval endpoint sorting via b+-trees
- On cue, add leaf pointers to time keyed priority queue
 - Pop as necessary to process

Efficient Retrieval Surface Match Data Structures

2. Incremental Episode Scoring via DNF Graph

- Cue edges serve as minimal propagation directives
 - Maps to DNF SAT: sat(n) := sat(n) ^ sat(par(n))
- On ●/O, update clause(s), possibly recurse

Efficient Retrieval Scaling – [ICCBR '09]

Interval Walk

 $O(|\Delta| * Temporal Selectivity)$ $O(|\Delta| * Structural Selectivity)$

Incremental Episode Scoring

Episodic Memory

Empirical Evaluation

Games

PDDL

Robotics

WSD

Useful: 7 general capabilities

Efficient: >100 cues, <50 msec.

Scalable: >48 hours, ~150 bytes – 2.5 kb/episode

25 October 2011 44

Episodic Memory Summary

Reactivity

 Faster than reactivity requirement for many tasks/ queries in practice

Scalability

• Days of RT (millions of episodes)

Generality

 Useful in games, robotics, planning, linguistics

25 October 2011 45

LTM for Intelligent Agents Contributions

- Integrated effective and efficient semantic and episodic memories with Soar
- Novel methods that scale to large amounts of knowledge and long agent lifetimes
- Empirically evaluated on numerous tasks
 - Linguistics, robotics, games, planning
 - Desktop platforms, robotics hardware, (and mobile!)

46

LTM for Generally Intelligent Agents Looking Forward

Future Directions

- Integrating context
- Automatic structure learning
- Reasoning with multiple sources of knowledge

- Robust decision-making
 - Improves with exploration and interaction
- Human-agent interaction
 - Complexity
 - Believability

25 October 2011 47

Thank You :-)

Questions?

Nate Derbinsky

Soar Group, University of Michigan

