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The Path to Release 

 Credit for most system functionality and all 
research to make Soar-RL possible should go to 
Shelley Nason and John Laird 

 Nason, S. and Laird, J. E., Soar-RL, Integrating 
Reinforcement Learning with Soar, 
International Conference on Cognitive 
Modeling, 2004. 

 The work being presented today deals with the 
engineering efforts to effectively and efficiently 
integrate Soar-RL with the Soar trunk 

 Nate Derbinsky, Nick Gorski, John Laird, Bob 
Marinier, Jonathan Voigt, Yongjia Wang  
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The RL Agent-Environment Interface 
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Sutton, R.S., and Barto, A.G., Reinforcement Learning: An Introduction.  
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Soar-RL Agent-Environment Interface 
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Numeric Indifferent Preferences 

 (<state> ^operator <operator> = number) 
 number, the value of  the preference, is a numeric 

constant 

 The value of  the numeric indifferent preference 
may bias selection of  the operator from amongst 
indifferent preferences 

 numeric-indifferent-mode determines how 
values combine 

 indifferent-selection sets the policy for deciding 
amongst indifferent preferences  

5/6/08 Soar Workshop 28 
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How Soar-RL Affects Agent Behavior  

 Over time, Soar-RL modifies 
numeric indifferent preference 
values such as to maximize the 
expected receipt of  future reward 

 Altering preference values in 
procedural memory allows Soar-RL 
to modify the outcome of  operator 
selection, and thus affect agent 
behavior  

5/6/08 Soar Workshop 28 
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Soar-RL Rules 

 LHS can be anything 

 RHS must be single 
numeric indifferent 
preference 

 Soar-RL rules form a 
representation of  a value 
function 

 Q( s, o ) = 2.3 

5/6/08 

sp {my*rl*rule 
 (state <s> ^operator <o> + 
      ^attrib-a alpha 
      ^attrib-b beta) 
 (<o> ^name my-op) 
--> 
 (<s> ^operator <o> = 2.3) 
} 

Soar Workshop 28 



12 

Water-Jug Agent Example 

5/6/08 

sp {water-jug*empty*small*0*0 
   (state <s> ^name water-jug ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty ^empty-jug.volume 3) 
   (<j1> ^volume 3 ^contents 0) 
   (<j2> ^volume 5 ^contents 0) 
--> 
   (<s> ^operator <op> = 0) 
} 

Soar Workshop 28 
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Soar-RL Rule Usage 

 In order for Soar-RL to affect selection of  
an operator in a particular state, a Soar-RL 
rule must exist whose LHS matches the 
state-operator pair 

 With complex agents, the requirement of  
manually representing the Q-function with 
Soar-RL rules is unreasonable 

 Solutions: scripting or templates  
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Soar-RL Templates 

 Must have :template flag 

 LHS can be anything 

 RHS must be single 
numeric indifferent 
preference 

 A Soar-RL template is a 
representation of  the 
initial value function of  a 
set of  state-operator pairs 

5/6/08 

sp {my*rl*template 
 :template 
 (state <s> ^operator <o> + 
      ^attrib-a <a> 
      ^attrib-b <b>) 
 (<o> ^name my-op) 
--> 
 (<s> ^operator <o> = 2.3) 
} 

Soar Workshop 28 
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Water-Jug Agent Example 

5/6/08 

sp {water-jug*empty 
   :template 
   (state <s> ^name water-jug ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty ^empty-jug.volume <evol>) 
   (<j1> ^volume 3 ^contents <c1>) 
   (<j2> ^volume 5 ^contents <c2>) 
--> 
   (<s> ^operator <op> = 0) 
} 

Soar Workshop 28 
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Soar-RL Template Behavior 

 During proposal phase, the template rule is 
supplied to the matcher 

 Matches are used to create new Soar-RL 
productions that contribute to the current 
cycle and future decisions 

 The new production has naming pattern              
rl*template-name*id 

 template-name – original template rule 

 id – auto incrementing counter 

5/6/08 Soar Workshop 28 
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Water-Jug Agent Example 
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sp {rl*water-jug*empty*1 
   (state <s> ^name water-jug ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty ^empty-jug.volume 3) 
   (<j1> ^volume 3 ^contents 0) 
   (<j2> ^volume 5 ^contents 0) 
--> 
   (<s> ^operator <op> = 0) 
} 



18 

Reward 

 The agent programmer must supply reward 
information to guide the reinforcement learning 
process 

 Location of  reward is a new structure, a state’s 
reward-link 

 state.reward-link.reward.value 

 state ^reward-link.reward.value 1.2 
 state ^reward-link.reward.value -2 

 The reward-link is not part of  the io-link and is 
not modified directly by the environment 
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Water-Jug Agent Example 

5/6/08 

sp {water-jug*detect*goal*achieved 
   (state <s> ^name water-jug 
              ^jug <j> ^reward-link <r>) 
   (<j> ^volume 3 ^contents 1) 
--> 
   (write (crlf) |The problem has been solved.|) 
   (<r> ^reward.value 10) 
   (halt)} 

Soar Workshop 28 
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Operator Selection 

 The purpose of  learning a Q-function is that 
the agent can act optimally by selecting the 
operator with the highest Q-value 

 In Soar preference semantics, symbolic 
preferences take precedence over numeric 
preferences 

 Only if  there would be a tie are numeric 
preferences considered 
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Exploration vs. Exploitation 

 For reinforcement learning to discover the 
optimal policy, it is necessary that the 
agent sometimes choose an action that 
does not have the maximum predicted 
value 

 Often occurs during initial learning and 
as a result of  a change in the task 

 Control of  the exploration policy takes 
place via the indifferent-selection 
command 
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Preference Updates 

 Soar-RL does Temporal Difference (TD) learning: 

 update = α( target – current ) 

 Current estimate = Q( st, ot ) 

 α = Learning rate 

 Target estimate and application of  update are 
affected by a number of  Soar-RL parameters 

 Updates are applied at the beginning of  the next 
decision phase 
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Gaps in Rule Coverage 

 Since TD updates are transmitted backwards 
through the stored Q-function, it would seem 
necessary that the function be well-represented 
by Soar-RL rules at each decision cycle 

 To address this practical issue, Soar-RL provides 
preliminary support for automatic propagation 
of  updates over “gaps” 

 By default, Soar-RL will automatically propagate 
updates over gaps, discounted exponentially 
with respect to the length of  the gap 

 This behavior can be enabled/disabled by 
manipulating the temporal-extension parameter 
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Gaps Example 

rl
 

go1 no2 

rl
 

go3 

5/6/08 Soar Workshop 28 

reward 
temporal-extension 
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Hierarchical Reinforcement Learning 

 HRL is RL done over a hierarchically 
decomposed structure 

 Learning can be done to improve subtask 
performance, as well as selection 
amongst subtasks 

 Hierarchical Soar-RL is built on Soar’s 
impasse structure 

5/6/08 Soar Workshop 28 
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Op No-Change Example 

5/6/08 

 Rewards at S1 after O1 are 
attributed to O1, discounted 
with respect to the number of  
decision cycles 

 Rewards at S2 are attributed 
to the respective operator 

 After O13, reward is checked 
at S2 and, if  present, 
attributed directly to O13 

S1 

S2 

O1 

r1 

O1 

r2 

O1 

O1 

r3 

O2 

O11  O12  O13 

Soar Workshop 28 
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Other Soar-RL Features 

 Exploration Policies 

 Boltzmann, Epsilon Greedy, Softmax, First, 
Last 

 Learning Policies 

 On-policy, Off-policy 

 Reward Discounting 

 Reward Accumulation 

 Eligibility Traces 

5/6/08 Soar Workshop 28 
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Manipulating Soar-RL Parameters 

 Get a parameter 

 rl [-g|--get] <name> 
 Set a parameter 

 rl [-s|--set] <name> <value> 
 Get all values 

 rl 
 Get Soar-RL statistics 

 rl [-S|--stats] <statistic> 

5/6/08 Soar Workshop 28 
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Debugging Soar-RL 

 New watch switches 

 --indifferent-selection = view numeric 
preferences for each operator 

 --template = view firing of  templates 

 --rl = debugging information 

 New print and excise switches 

 --rl = all Soar-RL rules 

 --template = all Soar-RL templates  

5/6/08 Soar Workshop 28 

rl*water-jug*empty*46  1.  0. 
rl*water-jug*pour*45  1.  3. 
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New Decision Cycle Commands 

 select <id> 
 Forces the selection of  an operator 

 predict 
 Determines which operator will be chosen 

during the next decision phase 

 If  operator selection will require probabilistic 
selection predict will manipulate the random 
number generator to enforce its prediction 
(assuming no preference changes) 
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TestSoarPerformance 

8.6.4 RL Δ 

OS X (RL on) 8.067 8.231 2.0% 

OS X (RL off) 8.201 1.7% 

Linux (RL on) 3.593 3.660 1.9% 

Linux (RL off) 3.637 1.2% 

Windows XP (RL on) 3.703 3.765 1.7% 

Windows XP (RL off) 3.725 0.6% 

5/6/08 Soar Workshop 28 
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Rules vs. Templates 

Rules Templates Δ 

Water Jug 

OS X .043 .065 51% 

Linux .024 .033 38% 

Windows XP .125 .140 12% 
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Nuggets & Coal 

 Nuggets 

 Soar-RL is an integration of  reinforcement 
learning with Soar 

 Soar-RL provides a highly configurable new 
learning mechanism with a relatively small 
performance cost 

 Soar-RLbeta is available for download today! 

 Coal 

 Current template implementation takes a 
heavy toll 
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Additional Resources 

 http://winter.eecs.umich.edu/soar 

 Binaries 

 Tutorial 

 Manual 

 Programmer Reference 
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