

## <u>Soar-RL</u> A Year of "Learning"

Nate Derbinsky

University of Michigan

- The Big Picture
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



- The Big Picture
  - The Path to Release
  - How Soar-RL Affects Agent Behavior
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



#### The Path to Release

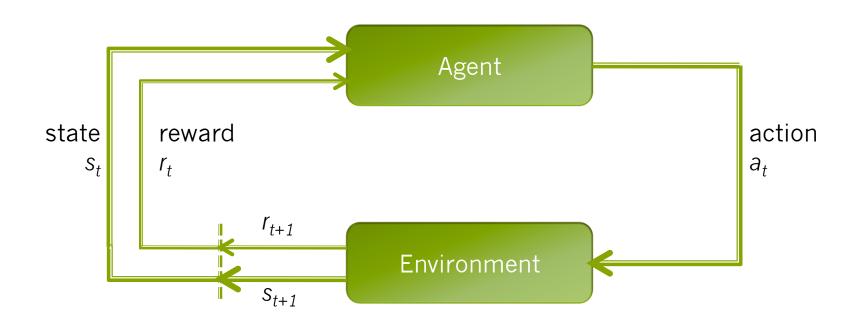


- Nason, S. and Laird, J. E., Soar-RL, Integrating Reinforcement Learning with Soar, International Conference on Cognitive Modeling, 2004.
- The work being presented today deals with the <u>engineering</u> efforts to effectively and efficiently integrate Soar-RL with the Soar trunk
  - Nate Derbinsky, Nick Gorski, John Laird, Bob Marinier, Jonathan Voigt, Yongjia Wang



### The RL Agent-Environment Interface

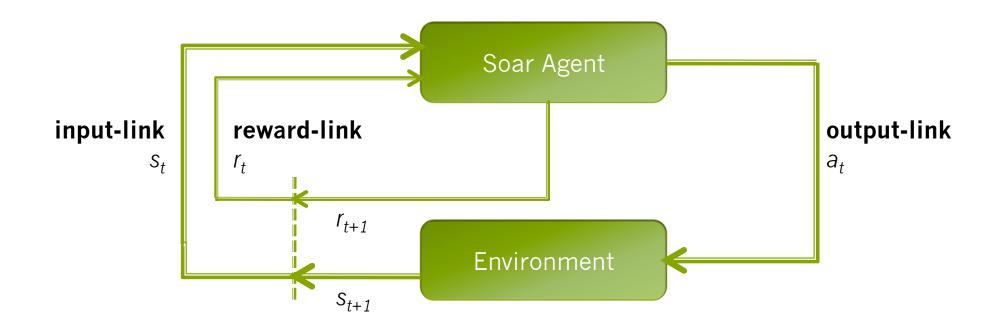




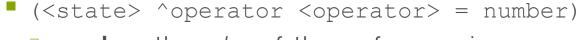
Sutton, R.S., and Barto, A.G., Reinforcement Learning: An Introduction.

## Soar-RL Agent-Environment Interface





#### Numeric Indifferent Preferences



- number, the value of the preference, is a numeric constant
- The value of the numeric indifferent preference may bias selection of the **operator** from amongst indifferent preferences
  - numeric-indifferent-mode determines how values combine
  - indifferent-selection sets the policy for deciding amongst indifferent preferences



#### How Soar-RL Affects Agent Behavior



- Over time, Soar-RL <u>modifies</u> <u>numeric indifferent preference</u> <u>values</u> such as to maximize the expected receipt of future reward
- Altering preference values in procedural memory allows Soar-RL to modify the outcome of operator selection, and thus affect agent behavior



- The Big Picture
- Developing Soar-RL Agents
  - Soar-RL Rules
  - Templates
  - Reward
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



#### Soar-RL Rules

- LHS can be anything
- RHS must be single numeric indifferent preference
- Soar-RL rules form a representation of a value function

# 

Water-Jug Agent Example

#### Soar-RL Rule Usage



- In order for Soar-RL to affect selection of an operator in a particular state, a Soar-RL rule must exist whose LHS matches the state-operator pair
- With complex agents, the requirement of manually representing the Q-function with Soar-RL rules is unreasonable
  - Solutions: scripting or templates

#### Soar-RL Templates

- Must have :template flag
- LHS can be anything
- RHS must be single numeric indifferent preference
- A Soar-RL template is a representation of the <u>initial</u> value function of a set of state-operator pairs

#### Water-Jug Agent Example



```
sp {water-jug*empty
  :template
  (state <s> ^name water-jug ^operator <op> +
                                  ^jug <j1> <j2>)
  (<op> ^name empty ^empty-jug.volume <evol>)
  (<j1> ^volume 3 ^contents <c1>)
  (<j2> ^volume 5 ^contents <c2>)
-->
  (<s> ^operator <op> = 0)
}
```

#### Soar-RL Template Behavior



- Matches are used to create new Soar-RL productions that contribute to the current cycle and future decisions
- The new production has naming pattern rl\*template-name\*id
  - template-name original template rule
  - id auto incrementing counter



#### Water-Jug Agent Example



#### Reward

- The agent programmer must supply reward information to guide the reinforcement learning process
- Location of reward is a new structure, a state's reward-link
  - state.reward-link.reward.value
    - state ^reward-link.reward.value 1.2
    - state ^reward-link.reward.value -2
- The reward-link is not part of the io-link and is not modified directly by the environment



#### Water-Jug Agent Example



- The Big Picture
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
  - Operator Selection
  - Reinforcement Learning
  - Manipulating Soar-RL Parameters
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



#### **Operator Selection**



- The purpose of learning a Q-function is that the agent can act optimally by selecting the operator with the highest Q-value
- In Soar preference semantics, symbolic preferences take precedence over numeric preferences
  - Only if there would be a tie are numeric preferences considered

#### Exploration vs. Exploitation



- For reinforcement learning to discover the optimal policy, it is necessary that the agent sometimes choose an action that does not have the maximum predicted value
  - Often occurs during <u>initial learning</u> and as a result of a <u>change in the task</u>
- Control of the exploration policy takes place via the indifferent-selection command

#### **Preference Updates**

- Soar-RL does Temporal Difference (TD) learning:
  - update =  $\alpha$  (target current)
- Current estimate = Q( s<sub>t</sub>, o<sub>t</sub> )
- $\alpha$  = Learning rate
- Target estimate and application of update are affected by a number of Soar-RL parameters
- Updates are applied at the beginning of the next decision phase

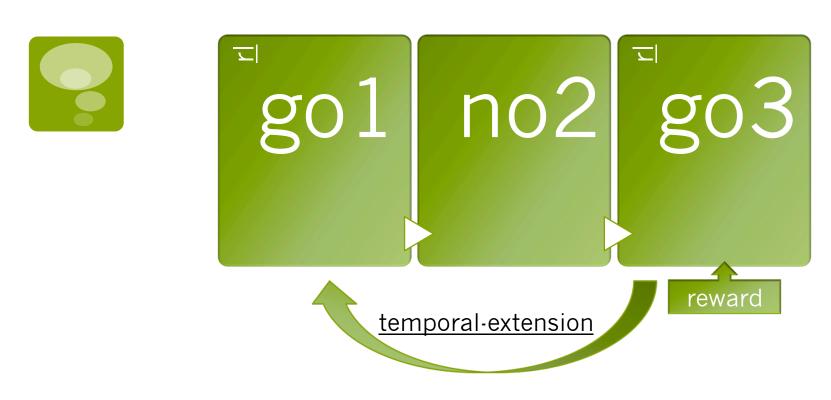


#### Gaps in Rule Coverage



- Since TD updates are transmitted backwards through the stored Q-function, it would seem necessary that the function be well-represented by Soar-RL rules at each decision cycle
- To address this practical issue, Soar-RL provides preliminary support for automatic propagation of updates over "gaps"
- By default, Soar-RL will automatically propagate updates over gaps, discounted exponentially with respect to the length of the gap
- This behavior can be enabled/disabled by manipulating the **temporal-extension** parameter

#### Gaps Example



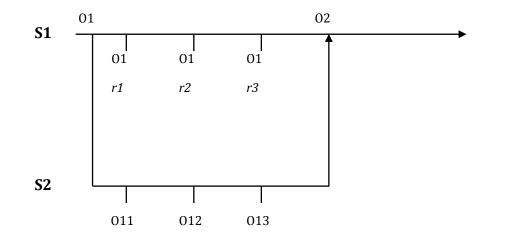
#### Hierarchical Reinforcement Learning

- HRL is RL done over a hierarchically decomposed structure
  - Learning can be done to <u>improve subtask</u> <u>performance</u>, as well as <u>selection</u> <u>amongst subtasks</u>
- Hierarchical Soar-RL is built on Soar's impasse structure



#### **Op No-Change Example**





- Rewards at S1 after O1 are attributed to O1, discounted with respect to the number of decision cycles
- Rewards at S2 are attributed to the respective operator
- After O13, reward is checked at S2 and, if present, attributed directly to O13

#### **Other Soar-RL Features**

- Exploration Policies
  - Boltzmann, Epsilon Greedy, Softmax, First, Last
- Learning Policies
  - On-policy, Off-policy
- Reward Discounting
- Reward Accumulation
- Eligibility Traces



#### Manipulating Soar-RL Parameters

- Get a parameter
  - rl [-g|--get] <name>
- Set a parameter
  - rl [-s|--set] <name> <value>
- Get all values
  - rl
- Get Soar-RL statistics
  - rl [-S|--stats] <statistic>



- The Big Picture
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



#### **Debugging Soar-RL**

- New watch switches
  - --indifferent-selection = view numeric preferences for each operator
  - --template = view firing of templates
  - --rl = debugging information
- New print and excise switches
  - --rl = all Soar-RL rules
  - --template = all Soar-RL templates

rl\*water-jug\*empty\*46 1. 0. rl\*water-jug\*pour\*45 1. 3.



#### New Decision Cycle Commands

- select <id>
  - Forces the selection of an operator



- predict
  - Determines which operator will be chosen during the next decision phase
  - If operator selection will require probabilistic selection predict will manipulate the random number generator to enforce its prediction (assuming no preference changes)

- The Big Picture
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
  - TestSoarPerformance
  - Rules vs. Templates
- Nuggets & Coal
- Additional Resources



#### TestSoarPerformance

|                     | 8.6.4 | RL    | Δ    |
|---------------------|-------|-------|------|
| OS X (RL on)        | 8.067 | 8.231 | 2.0% |
| OS X (RL off)       |       | 8.201 | 1.7% |
|                     |       |       |      |
| Linux (RL on)       | 3.593 | 3.660 | 1.9% |
| Linux (RL off)      |       | 3.637 | 1.2% |
|                     |       |       |      |
| Windows XP (RL on)  | 3.703 | 3.765 | 1.7% |
| Windows XP (RL off) |       | 3.725 | 0.6% |



#### Rules vs. Templates

|            | Rules | Templates | Δ   |
|------------|-------|-----------|-----|
| Water Jug  |       |           |     |
| OS X       | .043  | .065      | 51% |
| Linux      | .024  | .033      | 38% |
| Windows XP | .125  | .140      | 12% |



- The Big Picture
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



#### Nuggets & Coal

- Nuggets
  - Soar-RL is an integration of reinforcement learning with Soar
  - Soar-RL provides a highly configurable new learning mechanism with a relatively small performance cost
  - Soar-RL<sub>beta</sub> is available for download today!
- Coal
  - Current template implementation takes a heavy toll



- The Big Picture
- Developing Soar-RL Agents
- Controlling the Soar-RL Algorithm
- Debugging Soar-RL
- Soar-RL Performance
- Nuggets & Coal
- Additional Resources



#### Additional Resources

#### http://winter.eecs.umich.edu/soar

- Binaries
- Tutorial
- Manual
  - Programmer Reference

