
Soar-RL
A Year of

“Learning”

Nate Derbinsky

University of Michigan

2

Outline

 The Big Picture

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

3

Outline

 The Big Picture

 The Path to Release

 How Soar-RL Affects Agent Behavior

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

4

The Path to Release

 Credit for most system functionality and all
research to make Soar-RL possible should go to
Shelley Nason and John Laird

 Nason, S. and Laird, J. E., Soar-RL, Integrating
Reinforcement Learning with Soar,
International Conference on Cognitive
Modeling, 2004.

 The work being presented today deals with the
engineering efforts to effectively and efficiently
integrate Soar-RL with the Soar trunk

 Nate Derbinsky, Nick Gorski, John Laird, Bob
Marinier, Jonathan Voigt, Yongjia Wang

5/6/08 Soar Workshop 28

5

The RL Agent-Environment Interface

5/6/08 Soar Workshop 28

Agent

Environment

state
st

reward
rt

action
at

rt+1

st+1

Sutton, R.S., and Barto, A.G., Reinforcement Learning: An Introduction.

6

Soar-RL Agent-Environment Interface

5/6/08 Soar Workshop 28

Soar Agent

Environment

input-link
st

reward-link
rt

output-link
at

rt+1

st+1

7

Numeric Indifferent Preferences

 (<state> ^operator <operator> = number)
 number, the value of the preference, is a numeric

constant

 The value of the numeric indifferent preference
may bias selection of the operator from amongst
indifferent preferences

 numeric-indifferent-mode determines how
values combine

 indifferent-selection sets the policy for deciding
amongst indifferent preferences

5/6/08 Soar Workshop 28

8

How Soar-RL Affects Agent Behavior

 Over time, Soar-RL modifies
numeric indifferent preference
values such as to maximize the
expected receipt of future reward

 Altering preference values in
procedural memory allows Soar-RL
to modify the outcome of operator
selection, and thus affect agent
behavior

5/6/08 Soar Workshop 28

Water Jug
Demonstration

5/6/08 Soar Workshop 28

10

Outline

 The Big Picture

 Developing Soar-RL Agents

 Soar-RL Rules
 Templates
 Reward

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

11

Soar-RL Rules

 LHS can be anything

 RHS must be single
numeric indifferent
preference

 Soar-RL rules form a
representation of a value
function

 Q(s, o) = 2.3

5/6/08

sp {my*rl*rule
 (state <s> ^operator <o> +
 ^attrib-a alpha
 ^attrib-b beta)
 (<o> ^name my-op)
-->
 (<s> ^operator <o> = 2.3)
}

Soar Workshop 28

12

Water-Jug Agent Example

5/6/08

sp {water-jug*empty*small*0*0
 (state <s> ^name water-jug ^operator <op> +
 ^jug <j1> <j2>)
 (<op> ^name empty ^empty-jug.volume 3)
 (<j1> ^volume 3 ^contents 0)
 (<j2> ^volume 5 ^contents 0)
-->
 (<s> ^operator <op> = 0)
}

Soar Workshop 28

13

Soar-RL Rule Usage

 In order for Soar-RL to affect selection of
an operator in a particular state, a Soar-RL
rule must exist whose LHS matches the
state-operator pair

 With complex agents, the requirement of
manually representing the Q-function with
Soar-RL rules is unreasonable

 Solutions: scripting or templates

5/6/08 Soar Workshop 28

14

Soar-RL Templates

 Must have :template flag

 LHS can be anything

 RHS must be single
numeric indifferent
preference

 A Soar-RL template is a
representation of the
initial value function of a
set of state-operator pairs

5/6/08

sp {my*rl*template
 :template
 (state <s> ^operator <o> +
 ^attrib-a <a>
 ^attrib-b)
 (<o> ^name my-op)
-->
 (<s> ^operator <o> = 2.3)
}

Soar Workshop 28

15

Water-Jug Agent Example

5/6/08

sp {water-jug*empty
 :template
 (state <s> ^name water-jug ^operator <op> +
 ^jug <j1> <j2>)
 (<op> ^name empty ^empty-jug.volume <evol>)
 (<j1> ^volume 3 ^contents <c1>)
 (<j2> ^volume 5 ^contents <c2>)
-->
 (<s> ^operator <op> = 0)
}

Soar Workshop 28

16

Soar-RL Template Behavior

 During proposal phase, the template rule is
supplied to the matcher

 Matches are used to create new Soar-RL
productions that contribute to the current
cycle and future decisions

 The new production has naming pattern
rl*template-name*id

 template-name – original template rule

 id – auto incrementing counter

5/6/08 Soar Workshop 28

17

Water-Jug Agent Example

5/6/08 Soar Workshop 28

sp {rl*water-jug*empty*1
 (state <s> ^name water-jug ^operator <op> +
 ^jug <j1> <j2>)
 (<op> ^name empty ^empty-jug.volume 3)
 (<j1> ^volume 3 ^contents 0)
 (<j2> ^volume 5 ^contents 0)
-->
 (<s> ^operator <op> = 0)
}

18

Reward

 The agent programmer must supply reward
information to guide the reinforcement learning
process

 Location of reward is a new structure, a state’s
reward-link

 state.reward-link.reward.value

 state ^reward-link.reward.value 1.2
 state ^reward-link.reward.value -2

 The reward-link is not part of the io-link and is
not modified directly by the environment

5/6/08 Soar Workshop 28

19

Water-Jug Agent Example

5/6/08

sp {water-jug*detect*goal*achieved
 (state <s> ^name water-jug
 ^jug <j> ^reward-link <r>)
 (<j> ^volume 3 ^contents 1)
-->
 (write (crlf) |The problem has been solved.|)
 (<r> ^reward.value 10)
 (halt)}

Soar Workshop 28

20

Outline

 The Big Picture

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Operator Selection
 Reinforcement Learning
 Manipulating Soar-RL Parameters

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

21

Operator Selection

 The purpose of learning a Q-function is that
the agent can act optimally by selecting the
operator with the highest Q-value

 In Soar preference semantics, symbolic
preferences take precedence over numeric
preferences

 Only if there would be a tie are numeric
preferences considered

5/6/08 Soar Workshop 28

22

Exploration vs. Exploitation

 For reinforcement learning to discover the
optimal policy, it is necessary that the
agent sometimes choose an action that
does not have the maximum predicted
value

 Often occurs during initial learning and
as a result of a change in the task

 Control of the exploration policy takes
place via the indifferent-selection
command

5/6/08 Soar Workshop 28

23

Preference Updates

 Soar-RL does Temporal Difference (TD) learning:

 update = α(target – current)

 Current estimate = Q(st, ot)

 α = Learning rate

 Target estimate and application of update are
affected by a number of Soar-RL parameters

 Updates are applied at the beginning of the next
decision phase

5/6/08 Soar Workshop 28

24

Gaps in Rule Coverage

 Since TD updates are transmitted backwards
through the stored Q-function, it would seem
necessary that the function be well-represented
by Soar-RL rules at each decision cycle

 To address this practical issue, Soar-RL provides
preliminary support for automatic propagation
of updates over “gaps”

 By default, Soar-RL will automatically propagate
updates over gaps, discounted exponentially
with respect to the length of the gap

 This behavior can be enabled/disabled by
manipulating the temporal-extension parameter

5/6/08 Soar Workshop 28

25

Gaps Example

rl

go1 no2

rl

go3

5/6/08 Soar Workshop 28

reward
temporal-extension

26

Hierarchical Reinforcement Learning

 HRL is RL done over a hierarchically
decomposed structure

 Learning can be done to improve subtask
performance, as well as selection
amongst subtasks

 Hierarchical Soar-RL is built on Soar’s
impasse structure

5/6/08 Soar Workshop 28

27

Op No-Change Example

5/6/08

 Rewards at S1 after O1 are
attributed to O1, discounted
with respect to the number of
decision cycles

 Rewards at S2 are attributed
to the respective operator

 After O13, reward is checked
at S2 and, if present,
attributed directly to O13

S1 

S2 

O1 

r1 

O1 

r2

O1 

O1 

r3

O2 

O11  O12  O13 

Soar Workshop 28

28

Other Soar-RL Features

 Exploration Policies

 Boltzmann, Epsilon Greedy, Softmax, First,
Last

 Learning Policies

 On-policy, Off-policy

 Reward Discounting

 Reward Accumulation

 Eligibility Traces

5/6/08 Soar Workshop 28

29

Manipulating Soar-RL Parameters

 Get a parameter

 rl [-g|--get] <name>
 Set a parameter

 rl [-s|--set] <name> <value>
 Get all values

 rl
 Get Soar-RL statistics

 rl [-S|--stats] <statistic>

5/6/08 Soar Workshop 28

30

Outline

 The Big Picture

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

31

Debugging Soar-RL

 New watch switches

 --indifferent-selection = view numeric
preferences for each operator

 --template = view firing of templates

 --rl = debugging information

 New print and excise switches

 --rl = all Soar-RL rules

 --template = all Soar-RL templates

5/6/08 Soar Workshop 28

rl*water-jug*empty*46 1. 0.
rl*water-jug*pour*45 1. 3.

32

New Decision Cycle Commands

 select <id>
 Forces the selection of an operator

 predict
 Determines which operator will be chosen

during the next decision phase

 If operator selection will require probabilistic
selection predict will manipulate the random
number generator to enforce its prediction
(assuming no preference changes)

5/6/08 Soar Workshop 28

33

Outline

 The Big Picture

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 TestSoarPerformance

 Rules vs. Templates

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

34

TestSoarPerformance

8.6.4 RL Δ

OS X (RL on) 8.067 8.231 2.0%

OS X (RL off) 8.201 1.7%

Linux (RL on) 3.593 3.660 1.9%

Linux (RL off) 3.637 1.2%

Windows XP (RL on) 3.703 3.765 1.7%

Windows XP (RL off) 3.725 0.6%

5/6/08 Soar Workshop 28

35

Rules vs. Templates

Rules Templates Δ

Water Jug

OS X .043 .065 51%

Linux .024 .033 38%

Windows XP .125 .140 12%

5/6/08 Soar Workshop 28

36

Outline

 The Big Picture

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

37

Nuggets & Coal

 Nuggets

 Soar-RL is an integration of reinforcement
learning with Soar

 Soar-RL provides a highly configurable new
learning mechanism with a relatively small
performance cost

 Soar-RLbeta is available for download today!

 Coal

 Current template implementation takes a
heavy toll

5/6/08 Soar Workshop 28

38

Outline

 The Big Picture

 Developing Soar-RL Agents

 Controlling the Soar-RL Algorithm

 Debugging Soar-RL

 Soar-RL Performance

 Nuggets & Coal

 Additional Resources

5/6/08 Soar Workshop 28

39

Additional Resources

 http://winter.eecs.umich.edu/soar

 Binaries

 Tutorial

 Manual

 Programmer Reference

5/6/08 Soar Workshop 28

