Soaring to New Platforms

2011 Update

Nate Derbinsky

University of Michigan

Progress: 2009

- Soar on iOS
 - One-off compilation

- Preliminary performance evaluation
 - Counting: ~20x slower
 on iPod Touch 2g

Progress: 2010 (Mobile)

- Demonstration of mobile learning on iOS
 - tictactoe with RL

 UI and functionality limited by foreign language (Objective-C) and tools

Progress: 2010 (Web)

 Soar as HTTP client via Java SML

- Web-based Liar's Dice
 - Humans vs. Soar

Resource (View)

Game State

Rules (Model)

5

2011 Update

Mobile

- Easy iOS compilation
- Preliminary urMus integration + demos (Derbinsky & Essl, 2011)

Web

- Preliminary PHP SML bindings
- Server-side learning demo

Mobile

iOS Compilation

http://code.google.com/p/soar/wiki/SoarOniPhone

Preview

- 1. Checkout SoarSuite+Core
- 2. make ios-simulation
 ios-armv6 | ios-armv7
- 3. XCode settings

urMus (Essl, 2010)

urmus.eecs.umich.edu

Open-source metaenvironment for live and interactive application design and programming on and for multi-touch mobile devices

- iOS, Android* support
- A/V primitives
- Lua front, C++ back
- Interfaces decomposedinto event-driven *regions*

Integrating Soar & urMus

- Each region can have an instance of Soar
- Minimal Lua interface to C++ SML
- Poor man's callback via visual update calls

```
Loading Rules
 r = Region()
 r:SoarLoadRules("simon-rl", "soar")
Managing Perception & Run Control
 t = r:SoarCreateConstant(0, "time",
                    clicks)
 r:SoarExec("step "..delayDecisions)
 r:SoarDelete(t)
Processing Actions & Proprioceptive Feedback
 name, params = r:SoarGetOutput()
 result = params.output
 r:SoarSetOutputStatus(1)
Simulation Conclusion & Reinitialization
 r:SoarFinish()
 r:SoarInit()
```

urMus Demo Applications (1)

Soar Version 26 lines

(A)Synch Counting 125 lines

Multi-Agent Food Gathering 266 lines

1/2-Player Tic-Tac-Toe 270 lines

urMus Demo Applications (2)

Water-Jug RL Comparison 370 lines

Interactive Sequence Learning 370 lines

Interactive RL Music Generation 528 lines

Maximum decision 1msec, 3g iPod Touch 6 agents, 2 interfaces, Rules+RL+SMem

Web

Preliminary PHP Support

Usage

- checkout, make
- CLI + Apache documentation
- Examples
 - Lightweight CLI
 - RL Unit Tests
 - Web Learning

Issues

- Select callbacks implemented
- Callbacks supply agent name (vs. reference)
- Limited use (i.e. more issues to come)

Water Jug: Server-side Learning Demo

Evaluation

Nuggets

 Significant progress in supporting Soar on mobile and web platforms

Coal

Limited performance and efficacy evaluation