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The problem Boundary Tree

We want a supervised learning algorithm to have good generalization, but also the following The nodes of the Boundary Tree (BT) are previously seen data points x and their associated
properties: class C(x). When queried with a new point x, it finds a point y close to x (caveat: the

algorithm requires a metric). The class C(y) of y is the predicted class of x.

The output point is found by starting at the root of the tree and recursively looking

 Fast online processing of both training examples and test queries . T
through children for the node closest to x. It stops when it finds a locally closest node.

* One-shot learning, and can achieve zero error on training set
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Benchmark

Toy examples

Toy classification problem Toy regression problem , L o , ,
. . | .  MNIST: 60,000 labeled handwritten digits for training, 10,000 for testing (784 pixels).
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: I s L T R AT K Nearest Neighbor with Euclidean L2 distance: 97.1% accuracy (3-NN).
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R AR L RS * Training on full MNIST with 4 cores in 17 seconds in Java.
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I Testing on 10,000 samples in 4 seconds. 3-NN takes about 2 hours.
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it Better metric: HOG (Histogram of Gradients). Gets 98.9% accuracy (3-NN: 98.6%).
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Ground truth BG: 724 nodes after Ground truth SECCU
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* Compresses the data by only storing points near boundaries e
* Provides tree data structure for fast training and testing

* Empirically gives similar accuracy to kNN while retaining space and time advantage, when Original image Histogram of gradients representation
building forest of several Boundary Trees 27x27x4 = 2916 dimensional.



