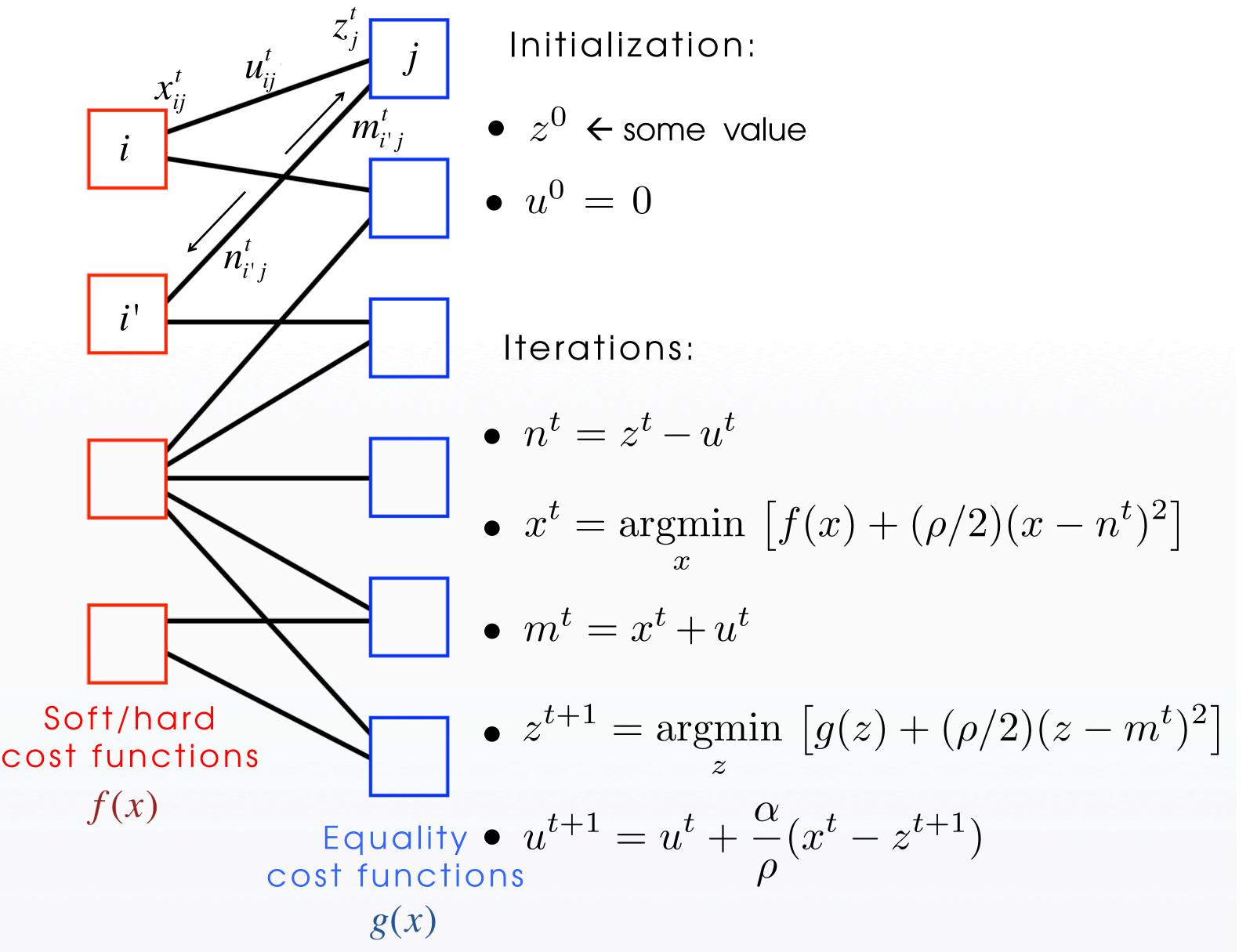
Improved message-passing algorithm incorporating certainty information

Message-passing alg. based on ADMM Distinct certainty weights: "no opinion"; "certain"; "standard" Improved performance on non-convex opt. problems Summary

Message-passing ADMM



- Above algorithm is well-defined even for non-convex functions
- For convex functions global minimum is attained for weight parameter > 0 (see Boyd et al. 2011)
- Global convergence rate of O(1/t) under convexity and linear rate under strict convexity. Dependency on ρ is significant and poorly understood (see Deng and Yin 2012)

References

Novel 3-weight algorithm

Different weights per iteration (t), edge (i, j) and direction $i \rightarrow j$

$$ar{
ho}_{ij}^{\scriptscriptstyle t},ar{
ho}_{ij}^{\scriptscriptstyle t}\in\!\left\{0,\!+\infty,
ho_0
ight\}$$
 `no opinio

Initialization:

•
$$z^0$$

• $u^0 = 0 \quad \overleftarrow{\rho}_{ij}^0 = 0$

Iterations:

- $n^t = z^t u^t$
- $x^t = \underset{x}{\operatorname{argmin}} \left[f(x) + (\overleftarrow{\rho}^t/2)(x n^t)^2 \right]$
 - \leftarrow Update logic depends on individual cost function
- $m^t = x^t + u^t$
- $z_j^{t+1} = \sum_i \vec{\rho}_{ij}^t m_{ij}^t / \sum_i \vec{\rho}_{ij}^t$
- \leftarrow Update logic depends on 3 scenarios

$$\begin{array}{c} t \mid t+1 \\ \downarrow \\ +\infty \in \{\vec{\rho}_{ij}^{t}\}_{i} \mid \vec{\rho}_{ij}^{t+1} = +\infty \forall i \end{array} \qquad \begin{array}{c} \downarrow \\ \rho_{0} \in \{\vec{\rho}_{ij}^{t}\}_{i} \mid \vec{\rho}_{ij}^{t+1} = \rho_{0} \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = \rho_{0} \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\ \vec{\rho}_{ij}^{t+1} = 0 \forall i \end{aligned} \qquad \begin{array}{c} \downarrow \\$$

• u^{t+1} \leftarrow Update rule depends on 4 scenarios

$$\vec{\rho}_{ij}^{t} = +\infty \vee \vec{\rho}_{ij}^{t+1} = +\infty$$

$$\vec{\rho}_{ij}^{t} = 0$$

$$\vec{\rho}_{ij}^{t} = 0$$

$$\vec{\rho}_{ij}^{t} = \rho_{0}$$

$$\vec{\rho}_{ij}^{t} = \rho_{0} \wedge \vec{\rho}_{ij}^{t+1} = \rho_{0}$$

$$\vec{\mu}_{ij}^{t+1} = 0$$

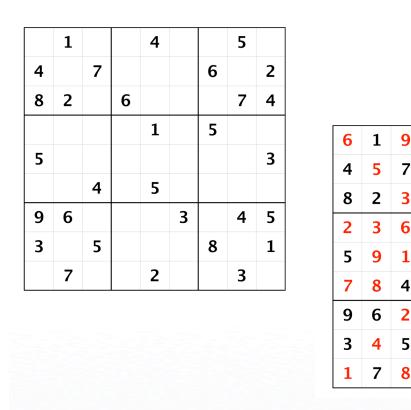
$$\vec{\mu}_{ij}^{t+1} = u_{ij}^{t} + (\alpha/\rho_{0})(x_{ij}^{t} - z_{j}^{t+1})$$

$$(x - n)$$

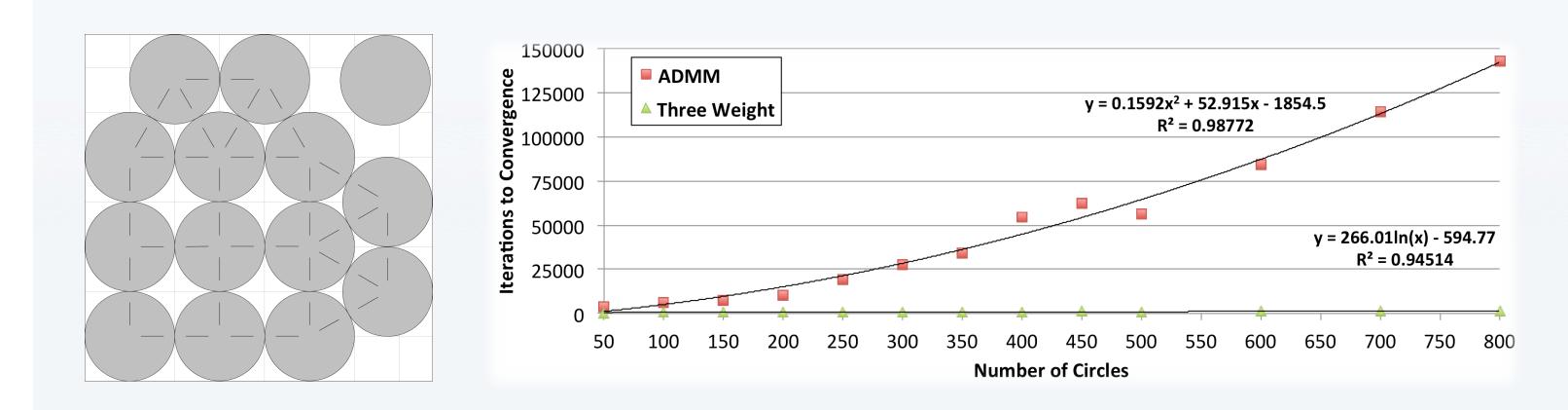
$$(\rho/2)(z - m^{\circ})^{-1}$$

Nate Derbinsky José Bento

ion', `certain', `standard'



- total)
- per square)
- initial puzzle clues



- circles

(Exception: All-zeros incoming weights treated as all-standard incoming weights)

DISNEW Research

Veit Elser Jonathan Yedidia

Performance comparison

Sudoku (∞ -weight intensive, non-convex problem)

							N	#	% Improved	Median
							1 N	Puzzles	> 2 imes	$\mathbf{Speedup}$
9	7	4	2	3	5	8	9	50	83.20%	3.35 imes
7	8	3	1	6	9	2	16	50	74.40%	3.65 imes
3	6	9	5	1	7	4	25	50	82.80%	5.58 imes
6 1	4 2	1 7	9 8	5 4	8 6	7 3	36	25	77.60%	5.35 imes
4	3	5	6	2	1	9	49	5	80.00%	$4.44 \times$
2	1	8	3	7	4	5	 64		100.00%	$6.01 \times$
5	9	6	7	8	2	1	04	4	100.0070	0.01×
8	5	2	4	9	3	6	81	1	60.00%	2.03 imes

• N binary variables per cell (one per symbol, $O(N^3)$)

• One hard constraint per cell (one symbol per cell)

• One hard constraint per row, column and square (one symbol of each kind per column, per row and

∞-weights used to propagate logical certainties from

Packing (0-weight intensive, non-convex problem)

• 2 real variables per circle (one per component)

One hard constraint enforcing no overlap with box

• One hard constraint per pair of circles enforcing no overlap between them, $O(N^2)$ total

0-weights used to avoid interference from distant

[•] S. Boyd et al. "Distributed optimization and statistical learning via the alternating direction method of multipliers", Foundations and Trends in Machine Learning (2011)

[•] W. Deng and W. Yin. "On the global and linear convergence of the generalized alternating direction method of multipliers", No. RICE-CAAM-TR12-14. Rice University (2012)