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Message-passing ADMM 

edge variables is a copy of the corresponding variable
that was on its right. The point is that edge variables
attached to the same equality constraint must ulti-
mately equal each other, but they can temporarily be
unequal while they separately try to satisfy di↵erent
cost functions on the left. We will use the notation x

to represent a vector consisting of the entire collection
of x

ij

edge variables; note that x normally has higher
dimensionality than r.

Because of the bipartite structure of a Forney factor
graph, we can split our cost functions into two groups:
those on the left that represent our original soft cost
functions and hard constraints, and those on the right
that represent equality constraints. We now imagine
that each x

ij

edge variable sits on the left side of the
edge, and make a copy of it called z

ij

that sits on the
right side of the edge, and formally split our objective
function E(x) into a sum of the left cost functions f(x)
and the right cost functions g(z), where z is a vector
made from all the z

ij

variables (see Figure 2).

The constraint that each edge variable x

ij

equals its
copy z

ij

will be enforced by a Lagrange multiplier
y

ij

, in a Lagrangian that we can write as L(x, y, z) =
f(x) + g(z) + y · (x � z). It will turn out to be use-
ful to add another “penalty” term (⇢/2)(x � z)2 to
the Lagrangian. Since x = z at the optimum, this
penalty term is zero at the optimum and non-negative
elsewhere, so it clearly does not change the optimum.
The parameter ⇢ can be thought of as a scalar, but
later we will generalize it to be a vector with a dif-
ferent ⇢

ij

for each edge. In summary, as illustrated
in Figure 2, our original problem of minimizing E(r)
has become equivalent to finding the minimum of the
Lagrangian

L(x, y, z) = f(x) + g(z) + y · (x � z) +
⇢

2
(x � z)2. (1)

To make progress in the derivation of our algorithm,
we now make the assumption that each of the local cost
functions f

a

(x) on the left side of the factor graph is
convex. We emphasize again that our final algorithm
will be well-defined even when this assumption is vi-
olated. All the equality cost functions on the right
are clearly convex, and our penalty terms are convex,
so our overall function is convex as well (Boyd and
Vandenberghe, 2004). That means that we can find
the minimimum of our Lagrangian by maximizing the
dual function

h(y) = L(x⇤
, y, z

⇤) (2)

where (x⇤
, z

⇤) are the values of x and z that minimize
L for a particular choice of y:

(x⇤
, z

⇤) = argmin
x,z

L(x, y, z) (3)
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L(x, y, z) = f(x) + g(z) + y · (x � z) + (⇢/2)(x � z)2

Figure 2: Solving constrained optimization problems
is equivalent to a minimization problem that naturally
splits into three pieces: (1) minimizing the original soft
and hard cost functions f(x) on the left, (2) minimiz-
ing the equality cost functions g(z) on the right, and
(3) ensuring that the x = z with the Lagrange multi-
pliers y.

We use a gradient ascent algorithm to maximize h(y).
Thus, given values of y

t at some iteration t, we itera-
tively compute (x⇤

, z

⇤) = argmin
x,z

L(x, y

t

, z), and then

move in the direction of the gradient of h(y) according
to

y

t+1 = y

t + ↵

@h

@y

= ↵(x⇤ � z

⇤) (4)

where ↵ is a step-size parameter.

We take advantage of the bipartite structure of our
factor graph to decouple the minimizations of x and
z. Introducing the scaled Lagrange multiplier u = y/⇢

(see Boyd et al., 2011, sec. 3.1.1) and the “messages”
m

t = x

t +u

t and n

t = z

t �u

t, we obtain the following
iterative equations which define our message-passing
version of ADMM:

x

t = argmin
x

⇥
f(x) + (⇢/2)(x � n

t)2
⇤

(5)

z

t+1 = argmin
z

⇥
g(z) + (⇢/2)(z � m

t)2
⇤

(6)

u

t+1 = u

t +
↵

⇢

(xt � z

t+1) (7)

The algorithm is initialized by choosing u

0 = 0, and
starting with some initial z

0. Then equation (5) de-
termines x

0, equation (6) determines z

1, equation (7)
determines u

1, we go back to equation (5) for x

1, and
so on.

Intuitively, the z and x variables are analogous to the
single-node and multi-node “beliefs” in belief propa-
gation, while the messages m and n are messages from
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Vandenberghe, 2004). That means that we can find
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Equation (13) is also known as the “di↵erence-map”
iteration used by the Divide and Concur algorithm.2

4 THREE-WEIGHT ALGORITHM

Notice that although the DC algorithm is a special
case of the ADMM algorithm, the weights ⇢ in ADMM
have disappeared in the DC update equations. These
weights have a very intuitive meaning in our message-
passing ADMM algorithm—they reflect how strongly
the messages should be adhered to in comparison to
the local function costs; i.e. the “reliability” or “cer-
tainty” of a message. It is thus natural to consider
a generalized version of the message-passing ADMM
algorithm where each edge (ij) connecting a function
cost i to an equality node j is given its own value of
⇢

ij

reflecting the certainty of messages on that edge.

In fact, it is more natural to consider an even greater
generalization, with di↵erent weights for messages go-
ing to the left and those going to the right, and where
the weights can change with each iteration. We denote
the vector of weights going to the left at time t as  �⇢ t,
and similarly the vector of weights going to the right
are denoted �!⇢ t. When we want to denote a particular
weight on an edge (ij), we will denote it  �⇢ t

ij

or �!⇢ t

ij

.
We need to be careful that for a convex problem, we
ensure that leftward and rightward weights eventually
equal each other and are constant, because otherwise
such an algorithm will not necessarily converge to the
global optimum.3

We therefore need to be relatively conservative in mod-
ifying the algorithm, and present here a relatively sim-
ple modification which allows for only three possible

2Sometimes Divide and Concur uses the dual version of
the di↵erence-map, where nt is updated according to a rule
obtained from Equation (13) by swapping the PC and PD

projections.
3We observed empirically that variants of our algo-

rithm would fail for convex problems when the weights
in the two directions were not eventually equal or when
they were not eventually constant. Also, the convergence
proof for ADMM on convex problems presented in (Boyd
et al., 2011) can be generalized straightforwardly to di↵er-
ent weights on each edge, but it depends on the weights
being constant within an iteration and between iterations.

values for the weights on each edge. First we have
standard weight messages with some weight ⇢0 that
is greater than zero and less than infinity. The exact
value of ⇢0 will be important for the rate of conver-
gence for problems with soft cost functions, but it will
be irrelevant for problems consisting entirely of hard
constraints, just as it is in standard DC, so for simplic-
ity one can suppose that ⇢0 = 1 for those problems.
Second we allow for infinite-weight messages, which
intuitively represent that the message’s value is cer-
tainly correct. Finally we allow for zero-weight mes-
sages, which intuitively represent that a function cost
node or equality node is completely uncertain about
the value that a variable should have, and its opinion
should be ignored.

In modifying the ADMM message-passing algorithm
to allow for zero weights or infinite weights, we need
to also be careful to properly deal with updates of u

ij

variables. Intuitively, u

ij

variables are tracking the
“disagreement” between the left and right beliefs on
an edge (ij). The u

ij

variable on an edge will grow in
magnitude over time if the left belief x

ij

is persistently
less than or persistently greater than the right belief
z

ij

. Because the u

ij

variables are added or subtracted
to the beliefs to form the messages, the message val-
ues can become quite di↵erent from the actual belief
values, as the u

ij

variables try to resolve the disagree-
ment. With infinite and zero weight messages, it is im-
portant to be able to “reset” the u

ij

variables to zero
if there is no disagreement on that edge; for example
when a infinite weight message is sent on an edge, it
means that the message is certainly correct, so any
previous disagreement recorded in the u

ij

should be
ignored.

4.1 DETAILED DESCRIPTION OF
THREE-WEIGHT ALGORITHM
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mately equal each other, but they can temporarily be
unequal while they separately try to satisfy di↵erent
cost functions on the left. We will use the notation x

to represent a vector consisting of the entire collection
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edge variables; note that x normally has higher
dimensionality than r.

Because of the bipartite structure of a Forney factor
graph, we can split our cost functions into two groups:
those on the left that represent our original soft cost
functions and hard constraints, and those on the right
that represent equality constraints. We now imagine
that each x

ij

edge variable sits on the left side of the
edge, and make a copy of it called z

ij

that sits on the
right side of the edge, and formally split our objective
function E(x) into a sum of the left cost functions f(x)
and the right cost functions g(z), where z is a vector
made from all the z
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variables (see Figure 2).

The constraint that each edge variable x
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equals its
copy z
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will be enforced by a Lagrange multiplier
y

ij

, in a Lagrangian that we can write as L(x, y, z) =
f(x) + g(z) + y · (x � z). It will turn out to be use-
ful to add another “penalty” term (⇢/2)(x � z)2 to
the Lagrangian. Since x = z at the optimum, this
penalty term is zero at the optimum and non-negative
elsewhere, so it clearly does not change the optimum.
The parameter ⇢ can be thought of as a scalar, but
later we will generalize it to be a vector with a dif-
ferent ⇢
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for each edge. In summary, as illustrated
in Figure 2, our original problem of minimizing E(r)
has become equivalent to finding the minimum of the
Lagrangian

L(x, y, z) = f(x) + g(z) + y · (x � z) +
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(x � z)2. (1)

To make progress in the derivation of our algorithm,
we now make the assumption that each of the local cost
functions f

a

(x) on the left side of the factor graph is
convex. We emphasize again that our final algorithm
will be well-defined even when this assumption is vi-
olated. All the equality cost functions on the right
are clearly convex, and our penalty terms are convex,
so our overall function is convex as well (Boyd and
Vandenberghe, 2004). That means that we can find
the minimimum of our Lagrangian by maximizing the
dual function
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splits into three pieces: (1) minimizing the original soft
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Notice that although the DC algorithm is a special
case of the ADMM algorithm, the weights ⇢ in ADMM
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passing ADMM algorithm—they reflect how strongly
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tainty” of a message. It is thus natural to consider
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algorithm where each edge (ij) connecting a function
cost i to an equality node j is given its own value of
⇢

ij

reflecting the certainty of messages on that edge.
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We need to be careful that for a convex problem, we
ensure that leftward and rightward weights eventually
equal each other and are constant, because otherwise
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less than or persistently greater than the right belief
z

ij

. Because the u

ij

variables are added or subtracted
to the beliefs to form the messages, the message val-
ues can become quite di↵erent from the actual belief
values, as the u

ij

variables try to resolve the disagree-
ment. With infinite and zero weight messages, it is im-
portant to be able to “reset” the u

ij

variables to zero
if there is no disagreement on that edge; for example
when a infinite weight message is sent on an edge, it
means that the message is certainly correct, so any
previous disagreement recorded in the u

ij

should be
ignored.

4.1 DETAILED DESCRIPTION OF
THREE-WEIGHT ALGORITHM

We initialize by setting all u
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= 0, and normally use
zero weights (e.g.  �⇢ 0

ij

= 0 on each edge) for the initial
n

0 messages from the right to left for those variables
we have no information about. For any variables about
which we are certain, we would accompany their mes-
sages with infinite weights. We next compute x

0 using
the standard update equations
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right will equal the initial x

0 beliefs.
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weights are computed using an ap-
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edge variables is a copy of the corresponding variable
that was on its right. The point is that edge variables
attached to the same equality constraint must ulti-
mately equal each other, but they can temporarily be
unequal while they separately try to satisfy di↵erent
cost functions on the left. We will use the notation x

to represent a vector consisting of the entire collection
of x
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edge variables; note that x normally has higher
dimensionality than r.

Because of the bipartite structure of a Forney factor
graph, we can split our cost functions into two groups:
those on the left that represent our original soft cost
functions and hard constraints, and those on the right
that represent equality constraints. We now imagine
that each x

ij

edge variable sits on the left side of the
edge, and make a copy of it called z

ij

that sits on the
right side of the edge, and formally split our objective
function E(x) into a sum of the left cost functions f(x)
and the right cost functions g(z), where z is a vector
made from all the z

ij

variables (see Figure 2).

The constraint that each edge variable x

ij

equals its
copy z

ij

will be enforced by a Lagrange multiplier
y

ij

, in a Lagrangian that we can write as L(x, y, z) =
f(x) + g(z) + y · (x � z). It will turn out to be use-
ful to add another “penalty” term (⇢/2)(x � z)2 to
the Lagrangian. Since x = z at the optimum, this
penalty term is zero at the optimum and non-negative
elsewhere, so it clearly does not change the optimum.
The parameter ⇢ can be thought of as a scalar, but
later we will generalize it to be a vector with a dif-
ferent ⇢

ij

for each edge. In summary, as illustrated
in Figure 2, our original problem of minimizing E(r)
has become equivalent to finding the minimum of the
Lagrangian

L(x, y, z) = f(x) + g(z) + y · (x � z) +
⇢

2
(x � z)2. (1)

To make progress in the derivation of our algorithm,
we now make the assumption that each of the local cost
functions f

a

(x) on the left side of the factor graph is
convex. We emphasize again that our final algorithm
will be well-defined even when this assumption is vi-
olated. All the equality cost functions on the right
are clearly convex, and our penalty terms are convex,
so our overall function is convex as well (Boyd and
Vandenberghe, 2004). That means that we can find
the minimimum of our Lagrangian by maximizing the
dual function
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where (x⇤
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Figure 2: Solving constrained optimization problems
is equivalent to a minimization problem that naturally
splits into three pieces: (1) minimizing the original soft
and hard cost functions f(x) on the left, (2) minimiz-
ing the equality cost functions g(z) on the right, and
(3) ensuring that the x = z with the Lagrange multi-
pliers y.

We use a gradient ascent algorithm to maximize h(y).
Thus, given values of y

t at some iteration t, we itera-
tively compute (x⇤
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where ↵ is a step-size parameter.

We take advantage of the bipartite structure of our
factor graph to decouple the minimizations of x and
z. Introducing the scaled Lagrange multiplier u = y/⇢

(see Boyd et al., 2011, sec. 3.1.1) and the “messages”
m

t = x
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t and n
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version of ADMM:

x

t = argmin
x

⇥
f(x) + (⇢/2)(x � n

t)2
⇤

(5)

z

t+1 = argmin
z

⇥
g(z) + (⇢/2)(z � m

t)2
⇤

(6)

u

t+1 = u

t +
↵

⇢

(xt � z

t+1) (7)

The algorithm is initialized by choosing u

0 = 0, and
starting with some initial z

0. Then equation (5) de-
termines x

0, equation (6) determines z

1, equation (7)
determines u

1, we go back to equation (5) for x

1, and
so on.

Intuitively, the z and x variables are analogous to the
single-node and multi-node “beliefs” in belief propa-
gation, while the messages m and n are messages from
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Equation (13) is also known as the “di↵erence-map”
iteration used by the Divide and Concur algorithm.2

4 THREE-WEIGHT ALGORITHM

Notice that although the DC algorithm is a special
case of the ADMM algorithm, the weights ⇢ in ADMM
have disappeared in the DC update equations. These
weights have a very intuitive meaning in our message-
passing ADMM algorithm—they reflect how strongly
the messages should be adhered to in comparison to
the local function costs; i.e. the “reliability” or “cer-
tainty” of a message. It is thus natural to consider
a generalized version of the message-passing ADMM
algorithm where each edge (ij) connecting a function
cost i to an equality node j is given its own value of
⇢

ij

reflecting the certainty of messages on that edge.

In fact, it is more natural to consider an even greater
generalization, with di↵erent weights for messages go-
ing to the left and those going to the right, and where
the weights can change with each iteration. We denote
the vector of weights going to the left at time t as  �⇢ t,
and similarly the vector of weights going to the right
are denoted �!⇢ t. When we want to denote a particular
weight on an edge (ij), we will denote it  �⇢ t
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or �!⇢ t

ij

.
We need to be careful that for a convex problem, we
ensure that leftward and rightward weights eventually
equal each other and are constant, because otherwise
such an algorithm will not necessarily converge to the
global optimum.3

We therefore need to be relatively conservative in mod-
ifying the algorithm, and present here a relatively sim-
ple modification which allows for only three possible

2Sometimes Divide and Concur uses the dual version of
the di↵erence-map, where nt is updated according to a rule
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projections.
3We observed empirically that variants of our algo-
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they were not eventually constant. Also, the convergence
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ent weights on each edge, but it depends on the weights
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values for the weights on each edge. First we have
standard weight messages with some weight ⇢0 that
is greater than zero and less than infinity. The exact
value of ⇢0 will be important for the rate of conver-
gence for problems with soft cost functions, but it will
be irrelevant for problems consisting entirely of hard
constraints, just as it is in standard DC, so for simplic-
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sages, which intuitively represent that a function cost
node or equality node is completely uncertain about
the value that a variable should have, and its opinion
should be ignored.

In modifying the ADMM message-passing algorithm
to allow for zero weights or infinite weights, we need
to also be careful to properly deal with updates of u
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variables are tracking the
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an edge (ij). The u
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variable on an edge will grow in
magnitude over time if the left belief x

ij
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less than or persistently greater than the right belief
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. Because the u
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variables are added or subtracted
to the beliefs to form the messages, the message val-
ues can become quite di↵erent from the actual belief
values, as the u
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variables try to resolve the disagree-
ment. With infinite and zero weight messages, it is im-
portant to be able to “reset” the u
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variables to zero
if there is no disagreement on that edge; for example
when a infinite weight message is sent on an edge, it
means that the message is certainly correct, so any
previous disagreement recorded in the u
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should be
ignored.

4.1 DETAILED DESCRIPTION OF
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We initialize by setting all u
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zero weights (e.g.  �⇢ 0
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= 0 on each edge) for the initial
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0 messages from the right to left for those variables
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those on the left that represent our original soft cost
functions and hard constraints, and those on the right
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that sits on the
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made from all the z
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f(x) + g(z) + y · (x � z). It will turn out to be use-
ful to add another “penalty” term (⇢/2)(x � z)2 to
the Lagrangian. Since x = z at the optimum, this
penalty term is zero at the optimum and non-negative
elsewhere, so it clearly does not change the optimum.
The parameter ⇢ can be thought of as a scalar, but
later we will generalize it to be a vector with a dif-
ferent ⇢
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for each edge. In summary, as illustrated
in Figure 2, our original problem of minimizing E(r)
has become equivalent to finding the minimum of the
Lagrangian

L(x, y, z) = f(x) + g(z) + y · (x � z) +
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(x � z)2. (1)

To make progress in the derivation of our algorithm,
we now make the assumption that each of the local cost
functions f
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(x) on the left side of the factor graph is
convex. We emphasize again that our final algorithm
will be well-defined even when this assumption is vi-
olated. All the equality cost functions on the right
are clearly convex, and our penalty terms are convex,
so our overall function is convex as well (Boyd and
Vandenberghe, 2004). That means that we can find
the minimimum of our Lagrangian by maximizing the
dual function
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where (x⇤
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is equivalent to a minimization problem that naturally
splits into three pieces: (1) minimizing the original soft
and hard cost functions f(x) on the left, (2) minimiz-
ing the equality cost functions g(z) on the right, and
(3) ensuring that the x = z with the Lagrange multi-
pliers y.

We use a gradient ascent algorithm to maximize h(y).
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t at some iteration t, we itera-
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We take advantage of the bipartite structure of our
factor graph to decouple the minimizations of x and
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(see Boyd et al., 2011, sec. 3.1.1) and the “messages”
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starting with some initial z

0. Then equation (5) de-
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0, equation (6) determines z
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determines u

1, we go back to equation (5) for x
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so on.

Intuitively, the z and x variables are analogous to the
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Equation (13) is also known as the “di↵erence-map”
iteration used by the Divide and Concur algorithm.2

4 THREE-WEIGHT ALGORITHM

Notice that although the DC algorithm is a special
case of the ADMM algorithm, the weights ⇢ in ADMM
have disappeared in the DC update equations. These
weights have a very intuitive meaning in our message-
passing ADMM algorithm—they reflect how strongly
the messages should be adhered to in comparison to
the local function costs; i.e. the “reliability” or “cer-
tainty” of a message. It is thus natural to consider
a generalized version of the message-passing ADMM
algorithm where each edge (ij) connecting a function
cost i to an equality node j is given its own value of
⇢

ij

reflecting the certainty of messages on that edge.

In fact, it is more natural to consider an even greater
generalization, with di↵erent weights for messages go-
ing to the left and those going to the right, and where
the weights can change with each iteration. We denote
the vector of weights going to the left at time t as  �⇢ t,
and similarly the vector of weights going to the right
are denoted �!⇢ t. When we want to denote a particular
weight on an edge (ij), we will denote it  �⇢ t

ij
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.
We need to be careful that for a convex problem, we
ensure that leftward and rightward weights eventually
equal each other and are constant, because otherwise
such an algorithm will not necessarily converge to the
global optimum.3

We therefore need to be relatively conservative in mod-
ifying the algorithm, and present here a relatively sim-
ple modification which allows for only three possible

2Sometimes Divide and Concur uses the dual version of
the di↵erence-map, where nt is updated according to a rule
obtained from Equation (13) by swapping the PC and PD

projections.
3We observed empirically that variants of our algo-

rithm would fail for convex problems when the weights
in the two directions were not eventually equal or when
they were not eventually constant. Also, the convergence
proof for ADMM on convex problems presented in (Boyd
et al., 2011) can be generalized straightforwardly to di↵er-
ent weights on each edge, but it depends on the weights
being constant within an iteration and between iterations.

values for the weights on each edge. First we have
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value of ⇢0 will be important for the rate of conver-
gence for problems with soft cost functions, but it will
be irrelevant for problems consisting entirely of hard
constraints, just as it is in standard DC, so for simplic-
ity one can suppose that ⇢0 = 1 for those problems.
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intuitively represent that the message’s value is cer-
tainly correct. Finally we allow for zero-weight mes-
sages, which intuitively represent that a function cost
node or equality node is completely uncertain about
the value that a variable should have, and its opinion
should be ignored.

In modifying the ADMM message-passing algorithm
to allow for zero weights or infinite weights, we need
to also be careful to properly deal with updates of u
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variables are tracking the
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an edge (ij). The u
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magnitude over time if the left belief x
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less than or persistently greater than the right belief
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. Because the u
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variables are added or subtracted
to the beliefs to form the messages, the message val-
ues can become quite di↵erent from the actual belief
values, as the u
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variables try to resolve the disagree-
ment. With infinite and zero weight messages, it is im-
portant to be able to “reset” the u

ij

variables to zero
if there is no disagreement on that edge; for example
when a infinite weight message is sent on an edge, it
means that the message is certainly correct, so any
previous disagreement recorded in the u
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should be
ignored.

4.1 DETAILED DESCRIPTION OF
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We initialize by setting all u

0
ij

= 0, and normally use
zero weights (e.g.  �⇢ 0
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edge variables; note that x normally has higher
dimensionality than r.
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made from all the z
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, in a Lagrangian that we can write as L(x, y, z) =
f(x) + g(z) + y · (x � z). It will turn out to be use-
ful to add another “penalty” term (⇢/2)(x � z)2 to
the Lagrangian. Since x = z at the optimum, this
penalty term is zero at the optimum and non-negative
elsewhere, so it clearly does not change the optimum.
The parameter ⇢ can be thought of as a scalar, but
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for each edge. In summary, as illustrated
in Figure 2, our original problem of minimizing E(r)
has become equivalent to finding the minimum of the
Lagrangian
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To make progress in the derivation of our algorithm,
we now make the assumption that each of the local cost
functions f
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(x) on the left side of the factor graph is
convex. We emphasize again that our final algorithm
will be well-defined even when this assumption is vi-
olated. All the equality cost functions on the right
are clearly convex, and our penalty terms are convex,
so our overall function is convex as well (Boyd and
Vandenberghe, 2004). That means that we can find
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is equivalent to a minimization problem that naturally
splits into three pieces: (1) minimizing the original soft
and hard cost functions f(x) on the left, (2) minimiz-
ing the equality cost functions g(z) on the right, and
(3) ensuring that the x = z with the Lagrange multi-
pliers y.
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that was on its right. The point is that edge variables
attached to the same equality constraint must ulti-
mately equal each other, but they can temporarily be
unequal while they separately try to satisfy di↵erent
cost functions on the left. We will use the notation x

to represent a vector consisting of the entire collection
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edge variables; note that x normally has higher
dimensionality than r.

Because of the bipartite structure of a Forney factor
graph, we can split our cost functions into two groups:
those on the left that represent our original soft cost
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that represent equality constraints. We now imagine
that each x
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edge variable sits on the left side of the
edge, and make a copy of it called z
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that sits on the
right side of the edge, and formally split our objective
function E(x) into a sum of the left cost functions f(x)
and the right cost functions g(z), where z is a vector
made from all the z
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variables (see Figure 2).
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equals its
copy z
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will be enforced by a Lagrange multiplier
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, in a Lagrangian that we can write as L(x, y, z) =
f(x) + g(z) + y · (x � z). It will turn out to be use-
ful to add another “penalty” term (⇢/2)(x � z)2 to
the Lagrangian. Since x = z at the optimum, this
penalty term is zero at the optimum and non-negative
elsewhere, so it clearly does not change the optimum.
The parameter ⇢ can be thought of as a scalar, but
later we will generalize it to be a vector with a dif-
ferent ⇢

ij

for each edge. In summary, as illustrated
in Figure 2, our original problem of minimizing E(r)
has become equivalent to finding the minimum of the
Lagrangian

L(x, y, z) = f(x) + g(z) + y · (x � z) +
⇢

2
(x � z)2. (1)

To make progress in the derivation of our algorithm,
we now make the assumption that each of the local cost
functions f
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(x) on the left side of the factor graph is
convex. We emphasize again that our final algorithm
will be well-defined even when this assumption is vi-
olated. All the equality cost functions on the right
are clearly convex, and our penalty terms are convex,
so our overall function is convex as well (Boyd and
Vandenberghe, 2004). That means that we can find
the minimimum of our Lagrangian by maximizing the
dual function
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Figure 2: Solving constrained optimization problems
is equivalent to a minimization problem that naturally
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and hard cost functions f(x) on the left, (2) minimiz-
ing the equality cost functions g(z) on the right, and
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will depend on an analysis of the function. For ex-
ample, for the Sudoku problem (see next section) we
will only send out standard weights or infinite weights,
depending on a logic that sends out infinite weights
only when we are certain about the corresponding x

value. Whenever an infinite weight is used, whether
for a right-going message at this point or for a left-
going message at another stage, the u

t

ij

for that edge
is immediately re-set to zero.

We next compute the z

t+1 right beliefs by taking a
weighted average of the m

t messages, weighted by the�!
⇢

t

weights. That means that if any message has
infinite weight, it will control the average, and any
zero-weight message will not contribute to the aver-
age. If the logic used to send infinite weights is cor-
rect, there should not be any contradictions between
infinite weight messages.

To compute the weights coming back to the left from
an equality node, we follow the following logic. First, if
any edge is sending in an infinite �!⇢ t

ij

weight, all edges

out of the equality node get back an infinite  �⇢ t+1
ij

weight. Otherwise, all edges get back an standard �
⇢

t+1
ij

weight as long as at least one of the incoming
weights is non-zero. Finally, if all incoming �!⇢ t

ij

are

zero, the outgoing  �⇢ t+1
ij

weights are also set to zero.

Next, all u variables are updated. Any u

ij

on an edge
that has an infinite weight in either direction is reset
to zero. Also any edge that has a zero weight �!⇢ t

ij

has
its u variable reset to zero (the reasoning is that it did
not contribute to the average, and should agree with
the consensus of the rest of the system). Any edge
that has a standard weight �!⇢ t

ij

while all other edges
into its equality node have zero weight also has its u

variable reset to zero (the reasoning again is that there
was no disagreement, so there is no longer any need
to modify the right belief). Any other edge that has
a standard weight �!⇢ t

ij

and a standard weight  �⇢ t+1
ij

will have its u

t+1
ij

updated according to the formula

u
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= u
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+ (↵/⇢0)(xt
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). Once the u variables

are updated, we can update all the right-to-left n

t+1

messages according to the formulas n

t+1
ij

= z

t+1
ij

�u

t+1
ij

.

Finally, we are done with an iteration and can go on
to the next one. Our stopping criterion is that all
the n and m messages are identical from iteration to
iteration, to some specified numerical tolerance.

We now illustrate the utility of non-standard weights
on two non-convex problems: Sudoku and circle-
packing. We will find that infinite weights are useful
for Sudoku, because they allow the algorithm to propa-
gate certain information, while zero weights are useful
for circle-packing because they allow the algorithm to
ignore irrelevant constraints.

Figure 3: A typical 9 ⇥ 9 sudoku puzzle: (a) original
problem and (b) corresponding solution, with added
digits marked in red.

5 SUDOKU

A Sudoku puzzle is a partially completed row-column
grid of cells partitioned into N regions, each of size
N cells, to be filled in using a prescribed set of N

distinct symbols, such that each row, column, and
region contains exactly one of each element of the
set. A well-formed Sudoku puzzle has exactly one
solution. Sudoku is an example of an exact-cover
(Knuth, 2000) constraint-satisfaction problem and is
NP-complete when generalized to N ⇥ N grids (Yato
and Seta, 2003).

People typically solve Sudoku puzzles on a 9 ⇥ 9 grid
(e.g. see Figure 3) containing nine 3 ⇥ 3 regions,
but larger square-in-square puzzles are also possible
when investigating Sudoku-solving algorithms. To rep-
resent an N ⇥ N square-in-square Sudoku puzzle as
an optimization problem we use O(N3) binary in-
dicator variables and O(N2) hard constraints. For
all open cells (those that have not been supplied as
“clues”), we use a binary indicator variable, designated
as v(row, column, digit), to represent each possible
digit assignment. For example, the variables v(1, 3, 1),
v(1, 3, 2) . . . v(1, 3, 9) represent that the cell in row 1,
column 3 can take values 1 through 9. We then apply
hard “one-on” constraints to enforce digit distinctive-
ness: a one-on constraint requires that a single vari-
able is “on” (1.0) and any remaining are “o↵” (0.0).
We apply one-on constraints to four classes of variable
sets:

1. 8r8c {v(row, col, dig) : row = r, col = c}
one digit assignment per cell

2. 8r8d {v(row, col, dig) : row = r, dig = d}
one of each digit assigned per row

3. 8c8d {v(row, col, dig) : col = c, dig = d}
one of each digit assigned per column

4. 8s8d {v(row, col, dig) : sq(row, col) = s, dig = d}
one of each digit assigned per square

Prior work on formulating Sudoku puzzles as
constraint-satisfaction problems (e.g. Simonis, 2005)

•  N  b inar y var iables per  cel l  (one per symbol ,  O (N 3 )  
total)  

•  One hard const ra int  per  cel l  (one symbol  per  cel l )  

•  One hard const ra int  per  row, column and square 
(one symbol  of  each k ind per  column, per  row and 
per square) 

•  ∞ -weights  used to propagate logical  cer taint ies  f rom 
in i t ia l  puzz le c lues 

has utilized additional, redundant constraints to
strengthen deduction by combining several of the origi-
nal constraints, but we only utilize this base constraint
set.

Analysis of Sudoku as a dynamical system has shown
that puzzle di�culty depends not only on the global
properties of variable size and constraint density, but
also positioning patterns of the clues. Algorithmic
search through solution space can be chaotic, with
search times varying by orders of magnitude across
degrees of di�culty (Ercsey-Ravasz and Toroczkai,
2012).

Though Sudoku is not convex, we demonstrate in this
section that ADMM is often an e↵ective algorithm: it
only converges to actual solutions, it often completes
puzzles quickly, and it scales to large puzzle sizes.

We also integrate an implementation of infinite weights
within the one-on minimizers, which serves to reduce
the search space of the problem instance. We show
that introducing certainty via our three-weight algo-
rithm often improves time-to-solution, especially in
puzzles where constraint propagation is su�cient to
logically deduce most or all of the puzzle solution with
no search required (Simonis, 2005). This is of course
natural and to be expected—if we can reduce the e↵ec-
tive size of the puzzle to be solved by first successively
inferring certain values for cells (much as humans do
when solving Sudoku puzzles), only a smaller di�cult
core will need to be solved using the standard weight
messages.

5.1 EVALUATION

We implemented each hard one-on constraint as a
cost function on the left. For this class of constraint,
minimizing equation (8) involves a linear scan: select
the sole “on” edge as that which is certain and “on”
( �⇢ t

ij

= 1 and n

t

ij

= 1.0) or, in absence of such an
edge, that with the greatest incoming message value
and a standard weight.

Outgoing weights (�!⇢ t

ij

) default to ⇢0, with three ex-
ceptions. First, if a single edge is certain and “on”
( �⇢ t

ij

= 1 and n

t

ij

= 1.0), all outgoing assignments
are certain. Second, if all but a single incoming edge
is certain and “o↵” ( �⇢ t

ij

=1 and n

t

ij

= 0.0), all out-
going assignments are certain. Finally, incoming cer-
tainty for an edge is maintained in its outgoing weight
( �⇢ t

ij

=1) �!⇢ t

ij

=1).

We downloaded 185 N ⇥ N Sudoku puzzles where
N 2 {9, 16, 25, 36, 49, 64, 81} from an online puzzle
repository 4. For each puzzle instance we applied both
the ADMM message-passing algorithm and our three-

4http://www.menneske.no/sudoku/eng

Table 1: Algorithmic comparison of iterations-
to-convergence in NxN square-in-square Sudoku
puzzles. Each puzzle was solved using 5 di↵erent
random seeds and improvement is comparing our
three-weight algorithm to ADMM with a single
standard weight of 1.0. The value of “speedup” is
computed as (iterationsADMM/iterationsthree weight)
and “% improved” refers to the percentage of trials
that reduced iterations-to-solution by more than 2⇥.

N
#

Puzzles
% Improved

> 2⇥
Median
Speedup

09 50 083.20% 3.35⇥
16 50 074.40% 3.65⇥
25 50 082.80% 5.58⇥
36 25 077.60% 5.35⇥
49 05 080.00% 4.44⇥
64 04 100.00% 6.01⇥
81 01 060.00% 2.03⇥

weight algorithm using five random seeds for initial
conditions.

For all puzzle trials, both algorithms converged to the
correct solution, but Table 1 provides evidence that
our three-weight algorithm improved performance.
The “% Improved > 2⇥” column indicates the per-
centage of puzzle trials within each puzzle size for
which our algorithm converged in fewer than 50%
as many iterations given the same initial conditions:
by this definition, our algorithm improved more than
80% of all trials as compared to ADMM. The “Me-
dian Speedup” column refers to the improvement in
iterations-to-solution for each trial: overall the median
improvement for our algorithm was a 4.12⇥ reduction
in iterations, with a maximum improvement of 61.21⇥
on a single puzzle. While a total of 55 trials required
more iterations to solve using our algorithm, when ag-
gregated by puzzle size and di�culty (as labeled by the
puzzle author), only two classes of puzzle su↵ered re-
duced performance: (a) two “impossible” 16⇥ 16 puz-
zles and (b) the hardest 49⇥49 puzzle. It is likely with
these di�culty ratings, constraint propagation was of
little assistance, and thus both algorithms relied upon
equivalent search methods within a chaotic space, but
from di↵erent starting points.

6 CIRCLE PACKING

Circle packing is the problem of positioning a given
number of congruent circles in such a way that the
circles fit fully in a square without overlapping. A
large number of circles makes finding a solution di�-
cult, due in part to the coexistence of many di↵erent

will depend on an analysis of the function. For ex-
ample, for the Sudoku problem (see next section) we
will only send out standard weights or infinite weights,
depending on a logic that sends out infinite weights
only when we are certain about the corresponding x

value. Whenever an infinite weight is used, whether
for a right-going message at this point or for a left-
going message at another stage, the u
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ij

for that edge
is immediately re-set to zero.

We next compute the z

t+1 right beliefs by taking a
weighted average of the m

t messages, weighted by the�!
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weights. That means that if any message has
infinite weight, it will control the average, and any
zero-weight message will not contribute to the aver-
age. If the logic used to send infinite weights is cor-
rect, there should not be any contradictions between
infinite weight messages.

To compute the weights coming back to the left from
an equality node, we follow the following logic. First, if
any edge is sending in an infinite �!⇢ t

ij

weight, all edges

out of the equality node get back an infinite  �⇢ t+1
ij

weight. Otherwise, all edges get back an standard �
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weight as long as at least one of the incoming
weights is non-zero. Finally, if all incoming �!⇢ t

ij

are

zero, the outgoing  �⇢ t+1
ij

weights are also set to zero.

Next, all u variables are updated. Any u

ij

on an edge
that has an infinite weight in either direction is reset
to zero. Also any edge that has a zero weight �!⇢ t

ij

has
its u variable reset to zero (the reasoning is that it did
not contribute to the average, and should agree with
the consensus of the rest of the system). Any edge
that has a standard weight �!⇢ t

ij

while all other edges
into its equality node have zero weight also has its u

variable reset to zero (the reasoning again is that there
was no disagreement, so there is no longer any need
to modify the right belief). Any other edge that has
a standard weight �!⇢ t

ij

and a standard weight  �⇢ t+1
ij

will have its u
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updated according to the formula
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Finally, we are done with an iteration and can go on
to the next one. Our stopping criterion is that all
the n and m messages are identical from iteration to
iteration, to some specified numerical tolerance.

We now illustrate the utility of non-standard weights
on two non-convex problems: Sudoku and circle-
packing. We will find that infinite weights are useful
for Sudoku, because they allow the algorithm to propa-
gate certain information, while zero weights are useful
for circle-packing because they allow the algorithm to
ignore irrelevant constraints.

Figure 3: A typical 9 ⇥ 9 sudoku puzzle: (a) original
problem and (b) corresponding solution, with added
digits marked in red.

5 SUDOKU

A Sudoku puzzle is a partially completed row-column
grid of cells partitioned into N regions, each of size
N cells, to be filled in using a prescribed set of N

distinct symbols, such that each row, column, and
region contains exactly one of each element of the
set. A well-formed Sudoku puzzle has exactly one
solution. Sudoku is an example of an exact-cover
(Knuth, 2000) constraint-satisfaction problem and is
NP-complete when generalized to N ⇥ N grids (Yato
and Seta, 2003).

People typically solve Sudoku puzzles on a 9 ⇥ 9 grid
(e.g. see Figure 3) containing nine 3 ⇥ 3 regions,
but larger square-in-square puzzles are also possible
when investigating Sudoku-solving algorithms. To rep-
resent an N ⇥ N square-in-square Sudoku puzzle as
an optimization problem we use O(N3) binary in-
dicator variables and O(N2) hard constraints. For
all open cells (those that have not been supplied as
“clues”), we use a binary indicator variable, designated
as v(row, column, digit), to represent each possible
digit assignment. For example, the variables v(1, 3, 1),
v(1, 3, 2) . . . v(1, 3, 9) represent that the cell in row 1,
column 3 can take values 1 through 9. We then apply
hard “one-on” constraints to enforce digit distinctive-
ness: a one-on constraint requires that a single vari-
able is “on” (1.0) and any remaining are “o↵” (0.0).
We apply one-on constraints to four classes of variable
sets:

1. 8r8c {v(row, col, dig) : row = r, col = c}
one digit assignment per cell

2. 8r8d {v(row, col, dig) : row = r, dig = d}
one of each digit assigned per row

3. 8c8d {v(row, col, dig) : col = c, dig = d}
one of each digit assigned per column

4. 8s8d {v(row, col, dig) : sq(row, col) = s, dig = d}
one of each digit assigned per square

Prior work on formulating Sudoku puzzles as
constraint-satisfaction problems (e.g. Simonis, 2005)

Packing (0 -weight intens ive,  non-convex problem) 

Figure 4: An example packing of 14 circles within a
square. Contacting circles are indicated by lines.

circle arrangements with similar density. For example,
the packing in Figure 4 can be rotated across either or
both axes, and the free circle in the upper-right cor-
ner (a “free circle” or “rattle”) can be moved without
a↵ecting the density of the configuration.

To represent a circle-packing instance with N objects
as an optimization problem we use O(N) continuous
variables and O(N2) constraints. Each object has 2
variables: one representing each of its coordinates (or,
more generally, d variables for packing spheres in d

dimensions). For each object we create a single box-
intersection constraint, which enforces that the object
stays within the box. Furthermore, for each pair of
objects, we create a pairwise-intersection constraint,
which enforces that no two objects overlap.

Circle packing has been extensively studied in the lit-
erature (e.g. Szabó et al., 2007). Of particular rele-
vance, Gravel (2009) showed that the Divide and Con-
cur (DC) algorithm is an e↵ective algorithm for cir-
cle packing; however, those results depended upon an
ad-hoc process that dynamically weighted variable up-
dates relative to pairwise object distances. The algo-
rithmic e↵ect, intuitively, is that circles that are far
apart do not inform each others’ locations and thus
iterations-to-convergence improves dramatically if dis-
tant circles have little or no e↵ect on each other, es-
pecially when scaling to large numbers of circles. As
the next section demonstrates, we achieve a similar
performance improvement compared with ADMM/DC
using zero-weight messages in our three-weight algo-
rithm, but the approach is simpler and can be ap-
plied more generally to a variety of problems where
local constraints that are “inactive” could otherwise
send messages that would slow progress towards con-
vergence.

6.1 EVALUATION

We implemented both types of intersection constraints
as cost functions on the left. Box-intersection func-
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Figure 5: Growth in iterations (y-axis) when perform-
ing circle packing with large numbers of circles (x-axis)
when comparing ADMM with standard weights of 1.0
and our three-weight algorithm.

tions send messages, of standard weight (⇢0), for circles
sending n messages outside the box to have an x po-
sition at the nearest box boundary. For those circles
that are not outside the box, a zero-weight message
is sent to stay at the present position (�!⇢ t

ij

= 0 and
x

t

ij

= n

t

ij

). Pairwise-intersection functions are analo-
gous: intersecting circles are sent standard weight mes-
sages reflecting updated x positions obtained by mov-
ing each circle along the vector connecting them such
that equation (14) is satisfied (if both circles send equal
weight messages, they are moved an equal amount; if
one has a standard weight and one a zero weight, only
the circle sending a zero-weight message is moved),
while non-intersecting circles are sent zero-weight mes-
sages to remain at their present locations (xt

ij

= n

t

ij

).

We first compared iterations-to-convergence between
our algorithm and ADMM for a small number, N =
1 . . . 24, of unit circles in a square5. With 4 random
conditions per N , ⇢0 = 1, and ↵ = 0.016, we found
that for N < 20, our algorithm improved performance
infrequently: only 42% of trials had an improvement of
2⇥ or more, and median improvement in iterations was
1.77⇥. However, for N � 20, our algorithm showed
improvements of 2⇥ or more on 90% of trials and me-
dian improvement was more than 116⇥.

We thus proceeded to compare our algorithm and
ADMM as N grew large within a unit square7, with re-
sults summarized in Figure 5. Whereas our algorithm
showed only logarithmic growth in iterations as N in-
creased (R2

> 0.94; likely time required to converge to
a desired numerical tolerance of 10�11), and remained
fewer than 1200 iterations after N = 800, ADMM with

5We utilized the optimal box side length for each N as
listed on http://www2.stetson.edu/⇠efriedma/cirinsqu.

6We found this value to yield the greatest proportion
of converged trials for both algorithms after an empirical
sweep of ↵ 2 {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}.

7To guarantee convergence and reasonable solu-
tion time, we took the best known packings from
http://www.packomania.com and decreased radius by 5%
and used ↵ = 0.01.

•  2  real  var iables per  c i rc le (one per component)  

•  One hard const ra int  enforcing no over lap with box 

•  One hard const ra int  per  pai r  of  c i rc les  enforcing no 
over lap between them, O (N 2 )  total  

•  0 -weights  used to avoid inter ference f rom dis tant 
c i rc les  
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