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Long-Term Research Goal
General Intelligence

Agents that persist for long periods of time,
exhibiting robust and adaptive behavior in a
variety of tasks and situations.
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Inspiration from Humans: Memory

Class of mechanism to cope
with dynamic, partially-
observable environment

— Encodes experience

— Stores internally

— Supports retrieval

Without memory, agents
are reactive, stuck in the
here and now.
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Computational Challenge of Memory

How to maintain effective and efficient access to large
amounts of knowledge as it accumulates over long
periods of time.

Limitations of prior approaches...

— task-specific,
(e.g. Macedo & Cardoso, 2004)

— restricted representation, and/or
(e.g. Tecuci & Porter, 2007; 2009)

— do not scale to large amounts of experience
(e.g. Kuppuswamy et al., 2006; Douglass et al., 2009)



Effective and Efficient Memory

Episodic Memory Semantic Memory Forgetting
Sinmn el [N

Desiderata
— Generality: effective across a variety of tasks
— Reactivity: decisions < 50 milliseconds
— Scalability: support large amounts of knowledge

NOT comparing to human memory/data!



Outline

N Cognitive Architecture & Soar

Episodic Memory (overview)
[E] [ICCBR ‘09], [BRIMS ‘11], [AAMAS "12], [AAAI 12a], [AAAI '12b]

QW) Base-Level Decay
j=1

A"A" Semantic Memory

[ICCM ’10], [BRIMS "11], [AAAI “11], [AAAI 12b], [ICCM "12a]

r*: Forgetting
[ICCM "12a], [ICCM “12b], [ACS ‘12], [CSR “13]
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Cognitive Architecture
(Newell, 1990)

Specification of those aspects of cognition that
remain constant across the lifetime of an agent
— Memory systems of agent’s beliefs, goals, experience
— Knowledge representation
— Functional processes that lead to behavior

— Learning mechanisms

Goal. Develop and understand intelligence across a
diverse set of tasks and domains



Cognitive Architectures
Commonalities & Differences

Theory
— Knowledge representation
— Processes (e.g. decision-making, action, learning)

Methodology
— Research focus/evaluation criteria

Practicality
— Hardware/software platforms
— Implementation reliability & support
— Reactivity & scalability




Research Focus

Leabra

Biological Plausibility

ACT-R
CLARION
EPIC

Psychological Plausibility

Companions
ICARUS
LIDA

Sigma

Agent Functionality
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The Soar Cognitive Architecture

Created in 1982 by...

John Laird Allen Newell Paul Rosenbloom
Professor Founder of Al Professor
Michigan USC, ICT
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Soar
Distinctive Characteristics

e Efficiently brings to bear large amounts of knowledge

* Diverse mechanisms that support general problem solving
methods

e Public distribution and documentation
— Major operating systems (Windows, OS X, Linux)
— Many languages (C++, Java, Python, ...)

* Annual Soar Workshop
— Free @ UM, Ann Arbor: June 3-4 (tutorials), June 5-7 (talks)
— Academic, Government, Corporate (incl. SoarTech)
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Soar
Select Applications (1)

he horse raced

R1-Soar NL-Soar Amber EPIC-Soar ICT Virtual Human

Computer Configuration Language Processing Modeling HCI Natural Interaction, Emotion

-~~~ original flight
—— actual flight path

= radio y 4

TacAir-Soar Urban Combat Soar Quakebot Haunt

Complex Doctrine & Tactics Transfer Learning Anticipation Actors and Director
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Soar
Select Applications (2)

Simulated Scout
Mental Imagery

MOUTbot SORTS

Spatial Reasoning &
Real-time Strategy

Team Tactics &
Unpredictable Behavior

fafw|e[]T]v]u]1]o]e}
0e0GE0A0
L_Jz[x|c]v]s[n]v]

o

Available on the iPhone
D App Store

RelLAl Infinite Mario iSoar
Mental Imagery & Hierarchical Mobile Reinforcement

Reinforcement Learning Reinforcement Learning Learning
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Splinter-Soar
Robot Control

RESTful Soar

Web-based Gameplay,
Probabilistic Learning
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Soar (Laird, 2012)

Memory Integration
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Decision Cycle
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Agent reactivity is the time
required to execute each decision

cycle, including LT memory access
~ only bounded search!




Episodic Memory

Siams

Long-term, contextualized store of specific
events (Tulving, 1983)

Action Modeling

Virtual Sensing
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Episodic Memory

Integration

, EpISOdIC Memory
Representation K\ Matching
e Episode: connected di-graph
e Store: temporal sequence

t Storage '
Encoding/Storage
e Automatic Q : ]
* No dynamics (e.g. forgetting, blending, ...)
t Encoding '
Retrieval - ~
e Cue: acyclic graph Working Memory
e Semantics: desired features in context Cue
¢ Find the most recent episode that shares y
the most leaf nodes in common with the i
cue \ / Reconstruction
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Empirical Evaluation

Analysis & Algorithms |S,
» Please ask during Q&A, offline, etc.

Experimental Setup E .

49 domains: WSD, planning, robotics, games
e 10°-108 episodes ~ days of real time, >100 cues

Cue: ] A2 X3 X4 65 ¢¢

w b U
o O O

=
o

o

0 10 20 30 40 50 60 70 80 90 100 110 NN
Episodes (x1 Million) 12 Hours A

Max Retrieval Time (ms)
N
o
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Episodic Memory

L1

e Algorithms that are reactive and scalable for many tasks and cues

 Performance characterization w.r.t. general properties of environments, tasks, and
agents

 Demonstrated useful capabilities in a variety of problem domains

Ongoing Research
— Learning to use memory (Gorski ‘12)
— Prospective memory (Li et al. ‘12)
— Mixed-initiative situated instruction (Mohan et al. ‘13)
— Bounding memory
— Consolidation




Base-Level Decay
(Anderson et al. 2004)

Used to model human retrieval bias,
errors, and forgetting via fallur.e .................................

Predict future usage via history
1n<2t )
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Semantic Memory

Long-term store of general facts and relations
about the world, independent of the context in
which they were originally learned

Age nt Beneﬁts =l SUMO (upper ontology)

¢ 4.5K classes, 250K facts

* Access to large KBs

mml WordNet (lexicon)

* Retrleval bIaS aS a e 212K senses, 820K assertions
reasoning heuristic - [FZEIEEN

* 500K concepts, 5M facts

29 March 2013 Interactive Robotics Group @ MIT



Semantic Memory
Integration

Representation

e Directed graph

Encoding/Storage

occupation

¢ Incremental
e Deliberate

barack obama president

EEE] occupation
* Cue: set of features/relations michelle  obama first-lady
e Semantics: subset query

e Single result, ranked by bias value [#] Example cue:

last (obama) , spouse (X)
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Semantic Memory
Computational Challenges

Dynamic...
— number of nodes/edges
— symbol vocabulary

Scaling potential
— Nodes ~ millions
— Edges ~ 10 per node

Cue-matching optimality
— Feature satisfaction, ranking w.r.t. bias value
— O( |cue| x |objects]| )
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Analysis & Algorithms

Storage

— Incremental inverted index (via b+-trees)
(Zobel and Moffat, 2006)

Cue Matching
— Statistical query optimization (Chaudhuri, 1998)
— Hybrid ranking via locally efficient bias functions”




Example Semantic Knowledge

Semantic Objects: Features

8.

8.

SCEK
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Inverted Indexing

Semantic Objects: Features Inverted Index
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Feature Statistics

Semantic Objects: Features Inverted Index

- as La] [ K2
I

%

%

>%D--
o e s

29 March 2013 nteractive Robotics Group

27



Non-Biased Retrieval Algorithm

Inverted Index

Cue:

Query Plan:
Candi
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Introducing Bias

Semantic Objects: Features Inverted Index
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Biased Retrieval Algorithm #1

Sort on Query

Inverted Index

Cue:

Query Plan:

Candidate:

Each query scales with the size of

the candidate list!
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Biased Retrieval Algorithm #2
Static Sort

Inverted Index

Cue:

Query Plan:

Candidate:
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Biased Retrieval Algorithm #2
Static Sort

Inverted Index

Cue:

Query Plan:

Candidate:

Each bias-value update scales with

feature cardinality!
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Our Hybrid Approach

Empirically supported cardinality threshold, 6

If (cardinality > 8): Sort on Query [#1]

— Candidate enumeration scales with # of objects with
large cardinality (empirically rare)

If (cardinality < 0): Static Sort [#2]

— Bias updates must be locally efficient
* Objects affected: O(1)
* Computation: O(1)



Empirical Evaluation

Performance Characterization

e Selectivity + Co-occurrence
O(Failed Candidates)

Tasks
: O

* WSD: efficiency/usefulness of biased retrievals




WSD Evaluation
Motivation

Agent

Problem. Ambiguous Cues
Hypothesis. Retrieval History is Useful
Application. Word Sense Disambiguation
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WSD Evaluation

Historical Memory Retrieval Bias

Experimental Setup
* Input: “word”, POS

Task Performance (2" corpus exp.)

HSemCor M Senseval-2 Senseval-3

* Given: WordNet v3 L00%
* Correct sense(s) after each attemptsox
80%
Efficiency & Scaling >30x faster than DBMS:
. R/DF: 0(1), < 0.87 msec‘ »3x data + bias /
« Base-Level Activation: :Sif‘;l';ﬁ_tthe agg[‘; |
— Naive: O(# cand’s), < 13. ‘ sh-Ticelty Te: | |
— Locally Efficient Appro’ .
0O(1), £1.34 msec.

Idea relanve ranklng IS a” that IS Random Lesk Lesk-S Static Recency Dynamic Base-level
required, so re-compute {k'h} recent Frequency Frequency Activation
memory as a heuristic (>90% fidelity) | % %&% Biased Retrievals
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Semantic Memory

e Algorithms that are reactive and scalable for real tasks and KBs

 Performance characterization w.r.t. general properties of environments, tasks, and
agents

* Bias functions that are efficient, scalable, and useful for heuristic reasoning

Ongoing Research
— Prospective memory (Li et al. ‘12)
— Incremental language processing (Lonsdale et al. "12)
— Mixed-initiative situated instruction (Mohan et al. ‘13)
— Incorporating likelihood, context
— Consolidation/automatic storage




Forgetting
‘ .\.~\

Problem. Extended tasks that involve learning
large amounts of knowledge can lead to
performance degradation in existing systems
(e.g. Kennedy & Trafton, 2007).

Approach. Selectively retain learned knowledge.

Challenge. Balance...
— maintenance of high task performance

— reduction of computational resources across a variety
of tasks.



Hypothesis

Rational to forget a memory if...
1. not useful (via base-level activation) &
2. likely can reconstruct if necessary

Evaluation. 2 complex tasks, 2 memories

Mobile Robot Navigation — [REeS Multi-Player Dice

Procedural Memory
* 50% memory reduction
e competitive play

» days

Working Memory
* bounds decision time

e completes task
» 1 hour
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Forgetting: Naive Approach

Algorithm
— At each time step

* For each memory element
— If ( Activation < Threshold )
» Forget

Efficiency Evaluation

— Per Time Step: O( |Memory Elements]| )



Efficient Forgetting via Decay Prediction

Algorithm

* On new activation event
— Predict time of future decay
— Add to time-keyed map

e Ateachtimestept
— Remove elements in map at key t

Complexity Analysis
Per Time Step: O(|Decayed| + |Events|*[Prediction Cost])




Decay Prediction
Efficient and Correct

1. Cheaply approximate decay on each access

— Underestimate time of decay by treating each
time step of memory access independently: O(1)

2. Exact determination
— Binary parameter search: O( log,T )
— Not needed if element is removed by #1 estimate

— Otherwise, reduced by the degree to which #1 is
accurate




Novel Base-level Decay Approximation

Given TR
constants -

* Decay threshold (6
 Decay parameter value (d)

and a set of n memory accesses...
 Time steps since access (s)

 Number of accesses (k) at that
time step

solve for...

* Time steps (t,) till memory
decay

Calculation

For each memory access...
In(k-[t+5])=0
In(k)-d-In(t+5)=0

In(r + 5) = 2~ 1K)
—d
"""""" PRSI
=g 4 -5
n



Task: Mobile Robot Navigation

Simulated Exploration & Patrol
— 3" floor, BBB Building, UM

* 110 rooms
e 100 doorways

— Builds map in memory from
experience

pr — T
=

*\“_\
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Problem: Reactivity

Issue. Increasing map knowledge in working
memory (most used infrequently) ->

large episodes -> long reconstruction time.

Approach. Task-independent memory hierarchy

1. Automatically forget unused short-term features
of long-term objects

2. General knowledge to retrieve from SMem as
necessary



Results: Working-Memory Size
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Max. Processing Time
(msec./decision)
= N w i U (@)] ~ (0,0]
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Results: Decision Time

No Forgetting

Rules
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Forgetting

[N

>

* Explored common forgetting hypothesis in two memories, two
complex tasks

 Developed efficient and correct method of forgetting via base-level
activation model

* Improves reactivity and scaling for long lifetimes and large amounts
of knowledge, without reducing task performance

Ongoing Research
— Bounding storage for long-lived agents & mobile platforms
— Consolidation




Summary

Episodic Memory Semantic Memory Forgetting
Sinms A [N

* Analysis. Properties of Environment, Task, Agent
— Algorithms: Efficient, Scalable, Task-Independent

* Integration. Soar v9.3.2

— Demonstration of Agent Benefits




Thank You :)

Questions?

John Laird Georg Essl Justin Li
Professor Asst. Prof. PhD Cand.
Michigan Michigan Michigan
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