Effective and Efficient Memory for Generally Intelligent Agents

Nate Derbinsky

This Work: Soar Group, University of Michigan

Advisor: John Laird

Present: PostDoc @ Disney Research

with: Jonathan Yedidia

Long-Term Research Goal

General Intelligence

Agents that persist for long periods of time, exhibiting robust and adaptive behavior in a variety of tasks and situations.

29 March 2013

Interactive Robotics Group @ MIT

Inspiration from Humans: Memory

Class of mechanism to cope with dynamic, partially-observable environment

- Encodes experience
- Stores internally
- Supports retrieval

Without memory, agents are reactive, stuck in the *here* and *now*.

Computational Challenge of Memory

How to maintain <u>effective</u> and <u>efficient</u> access to large amounts of knowledge as it accumulates over long periods of time.

Limitations of prior approaches...

- task-specific,(e.g. Macedo & Cardoso, 2004)
- restricted representation, and/or (e.g. Tecuci & Porter, 2007; 2009)
- do not scale to large amounts of experience
 (e.g. Kuppuswamy et al., 2006; Douglass et al., 2009)

Effective and Efficient Memory

Desiderata

- Generality: effective across a variety of tasks
- Reactivity: decisions < 50 milliseconds</p>
- Scalability: support large amounts of knowledge

NOT comparing to human memory/data!

Outline

Cognitive Architecture (Newell, 1990)

Specification of those aspects of cognition that remain constant across the lifetime of an agent

- Memory systems of agent's beliefs, goals, experience
- Knowledge representation
- Functional processes that lead to behavior
- Learning mechanisms

Goal. Develop and understand intelligence across a diverse set of tasks and domains

Cognitive Architectures Commonalities & Differences

<u>Theory</u>

- Knowledge representation
- Processes (e.g. decision-making, action, learning)

Methodology

Research focus/evaluation criteria

Practicality

- Hardware/software platforms
- Implementation reliability & support
- Reactivity & scalability

Research Focus

Biological Plausibility

Leabra

Psychological Plausibility

ACT-R CLARION EPIC

Agent Functionality

Companions
ICARUS
LIDA
Sigma
Soar

The Soar Cognitive Architecture

Created in 1982 by...

John Laird Professor Michigan

Allen Newell Founder of Al

Paul Rosenbloom

Professor

USC, ICT

Soar

Distinctive Characteristics

- Efficiently brings to bear large amounts of knowledge
- Diverse mechanisms that support general problem solving methods
- Public distribution and documentation
 - Major operating systems (Windows, OS X, Linux)
 - Many languages (C++, Java, Python, ...)

- Annual Soar Workshop
 - Free @ UM, Ann Arbor: June 3-4 (tutorials), June 5-7 (talks)
 - Academic, Government, Corporate (incl. SoarTech)

Soar Select Applications (1)

R1-Soar Computer Configuration

NL-Soar Language Processing

Amber EPIC-Soar Modeling HCI

ICT Virtual Human
Natural Interaction, Emotion

TacAir-Soar
Complex Doctrine & Tactics

Urban Combat Transfer Learning

Soar Quakebot

Anticipation

Haunt
Actors and Director

Soar Select Applications (2)

MOUTbot
Team Tactics &
Unpredictable Behavior

SORTS
Spatial Reasoning &
Real-time Strategy

Simulated Scout

Mental Imagery

Splinter-Soar

ReLAI

Mental Imagery &

Reinforcement Learning

Infinite Mario

Hierarchical

Reinforcement Learning

iSoar Mobile Reinforcement Learning

RESTful Soar Web-based Gameplay, Probabilistic Learning

Soar (Laird, 2012) Memory Integration

Long-term, contextualized store of specific events (Tulving, 1983)

Episodic Memory

Integration

Representation

• Episode: connected di-graph

• Store: temporal sequence

Encoding/Storage

- Automatic
- No dynamics (e.g. forgetting, blending, ...)

Retrieval

- Cue: acyclic graph
- Semantics: desired features in context
- Find the most recent episode that shares the most leaf nodes in common with the cue

Empirical Evaluation

Analysis & Algorithms \(\hat{\sigma} \)

Please ask during Q&A, offline, etc.

Experimental Setup

- 49 domains: WSD, planning, robotics, games
- 10^5 - 10^8 episodes ~ days of real time, >100 cues

- Algorithms that are <u>reactive</u> and <u>scalable</u> for many tasks and cues
- <u>Performance characterization</u> w.r.t. general properties of environments, tasks, and agents
- Demonstrated <u>useful</u> capabilities in a variety of problem domains

Ongoing Research

- Learning to use memory (Gorski '12)
- Prospective memory (Li et al. '12)
- Mixed-initiative situated instruction (Mohan et al. '13)
- Bounding memory
- Consolidation

...

Base-Level Decay (Anderson et al. 2004)

Predict future usage via history

Used to model human retrieval bias, errors, and forgetting via failure

Long-term store of general facts and relations about the world, independent of the context in which they were originally learned

Agent Benefits

- Access to large KBs
- Retrieval bias as a reasoning heuristic

Semantic Memory Integration

Representation

Directed graph

Encoding/Storage

- Incremental
- Deliberate

Retrieval

- Cue: set of features/relations
- Semantics: subset query
- Single result, ranked by bias value [#]

Example cue:

last(obama), spouse(X)

Semantic Memory Computational Challenges

Dynamic...

- number of nodes/edges
- symbol vocabulary

Scaling potential

- Nodes ~ millions
- Edges ~ 10 per node

Cue-matching optimality

- Feature satisfaction, ranking w.r.t. bias value
- O(|cue| x |objects|)

Retrieval Latency: Chunks in DM x Retrieval Constraints x Type of DM (Error Bars: 95% Confidence Interval)

Analysis & Algorithms

Storage

Incremental inverted index (via b+-trees)(Zobel and Moffat, 2006)

Cue Matching

- Statistical query optimization (Chaudhuri, 1998)
- Hybrid ranking via locally efficient bias functions*

Example Semantic Knowledge

Semantic Objects: Features

Inverted Indexing

Semantic Objects: Features

Feature Statistics

Semantic Objects: Features

Non-Biased Retrieval Algorithm

Introducing Bias

Semantic Objects: Features

Biased Retrieval Algorithm #1 Sort on Query

Biased Retrieval Algorithm #2 Static Sort

Biased Retrieval Algorithm #2 Static Sort

Our Hybrid Approach

Empirically supported cardinality threshold, θ

```
If (cardinality > \theta): Sort on Query [#1]
```

 Candidate enumeration scales with # of objects with large cardinality (empirically rare)

```
If (cardinality \leq \theta): Static Sort [#2]
```

- Bias updates must be locally efficient
 - Objects affected: O(1)
 - Computation: O(1)

Empirical Evaluation

Performance Characterization

 Selectivity + Co-occurrence O(Failed Candidates)

Tasks

• Synthetic: efficiency/scaling of cue matching 🕰

WSD: efficiency/usefulness of biased retrievals

WSD Evaluation *Motivation*

Problem. Ambiguous Cues
Hypothesis. Retrieval History is Useful
Application. Word Sense Disambiguation

WSD Evaluation Historical Memory Retrieval Bias

- Algorithms that are <u>reactive</u> and <u>scalable</u> for real tasks and KBs
- <u>Performance characterization</u> w.r.t. general properties of environments, tasks, and agents
- Bias functions that are efficient, scalable, and useful for heuristic reasoning

Ongoing Research

- Prospective memory (Li et al. '12)
- Incremental language processing (Lonsdale et al. '12)
- Mixed-initiative situated instruction (Mohan et al. '13)
- Incorporating likelihood, context
- Consolidation/automatic storage

...

Problem. Extended tasks that involve learning large amounts of knowledge can lead to performance degradation in existing systems (e.g. Kennedy & Trafton, 2007).

Approach. Selectively retain learned knowledge.

Challenge. Balance...

- maintenance of high task performance
- reduction of computational resources across a variety of tasks.

Hypothesis

Rational to forget a memory if...

- 1. not useful (via base-level activation) &
- 2. likely can reconstruct if necessary

Evaluation. 2 complex tasks, 2 memories

Mobile Robot Navigation

Working Memory

- bounds decision time
- completes task
 - ➤ 1 hour

Multi-Player Dice

Procedural Memory

- 50% memory reduction
- competitive play
 - > days

Forgetting: Naïve Approach

Algorithm

- At each time step
 - For each memory element
 - If (Activation < Threshold)» Forget

Efficiency Evaluation

– Per Time Step: O(| Memory Elements |)

Efficient Forgetting via Decay Prediction

<u>Algorithm</u>

- On new activation event
 - Predict time of future decay
 - Add to time-keyed map
- At each time step t
 - Remove elements in map at key t

Complexity Analysis

Per Time Step: O(|Decayed| + |Events|*[Prediction Cost])

Decay Prediction Efficient and Correct

- 1. Cheaply approximate decay on each access
 - Underestimate time of decay by treating each time step of memory access independently: O(1)

2. Exact determination

- Binary parameter search: O(log₂T)
- Not needed if element is removed by #1 estimate
- Otherwise, <u>reduced</u> by the degree to which #1 is accurate

Novel Base-level Decay Approximation

Given

constants

- Decay threshold (θ)
- Decay parameter value (d)

and a set of *n* memory accesses...

- Time steps since access (s)
- Number of accesses (k) at that time step

solve for...

• Time steps (t_d) till memory decay

Calculation

For each memory access...

$$\ln(k \cdot [t+s]^{-d}) = \theta$$

$$\ln(k) - d \cdot \ln(t+s) = \theta$$

$$\ln(t+s) = \frac{\theta - \ln(k)}{-d}$$

$$t_d > = \sum_{j=1}^{n} t$$

Task: Mobile Robot Navigation

Simulated Exploration & Patrol

- 3rd floor, BBB Building, UM
 - 110 rooms
 - 100 doorways
- Builds map in memory from experience

Interactive Robotics Group @ MIT

Problem: Reactivity

Issue. Increasing map knowledge in working memory (most used infrequently) -> large episodes -> long reconstruction time.

Approach. Task-independent memory hierarchy

- 1. Automatically forget unused short-term features of long-term objects
- 2. General knowledge to retrieve from SMem as necessary

Results: Working-Memory Size

Results: Decision Time

- Explored common forgetting hypothesis in two memories, two complex tasks
- Developed <u>efficient</u> and <u>correct</u> method of forgetting via base-level activation model
- Improves <u>reactivity</u> and <u>scaling</u> for long lifetimes and large amounts of knowledge, <u>without reducing task performance</u>

Ongoing Research

- Bounding storage for long-lived agents & mobile platforms
- Consolidation

Summary

- Analysis. Properties of Environment, Task, Agent
 - Algorithms: Efficient, Scalable, Task-Independent
- Integration. Soar v9.3.2
- Evaluation.

Demonstration of Agent Benefits

Thank You:) Questions?

John Laird Professor Michigan

Georg Essl *Asst. Prof.*Michigan

Justin Li
PhD Cand.
Michigan