A Multi-Domain Evaluation of Scaling in Soar's Episodic Memory

Nate Derbinsky, Justin Li, John E. Laird
University of Michigan

Motivation

Prior Work

- Nuxoll & Laird ('12): integration and capabilities
- Derbinsky & Laird ('09): efficient algorithms

Core Question

To what extent is Soar's episodic memory effective and efficient for real-time agents that persist for long periods of time across a variety of tasks?

Approach: Multi-Domain Evaluation

- Existing agents from diverse tasks (49)
 - Linguistics, planning, games, robotics
- Long agent runs
 - Hours-days RT ($10^5 10^8$ episodes)
- Evaluate at each X episodes
 - Memory consumption
 - Reactivity for >100 task relevant cues
 - Maximum time for cue matching <? 50 msec.

Outline

- Overview of Soar's EpMem
- Word Sense Disambiguation (WSD)
- Planning
- Video Games & Robotics

Episodic Memory

Problem Formulation

Representation

• Episode: connected di-graph

• Store: temporal sequence

Encoding/Storage

- Automatic
- No dynamics

Retrieval

- Cue: acyclic graph
- Semantics: desired features in context
- Find the most recent episode that shares the most leaf nodes in common with the cue

Episodic Memory *Algorithmic Overview*

Storage

Capture WM-changes as temporal intervals

Cue Matching (reverse walk of cue-relevant Δ 's)

- 2-phase search
 - Only graph-match episodes that have all cue features independently
- Only evaluate episodes that have changes relevant to cue features
- Incrementally re-score episodes

Episodic Memory Storage Characterization

Episodic Memory

Retrieval Characterization

Assumptions

- Few changes per episode (temporal contiguity)
- Representational re-use (structural regularity)
- Small cue

Scaling

- Search distance (# changes to walk)
 - Temporal Selectivity: how often does a WME change
 - Feature Co-Occurrence: how often do WMEs co-occur within a single episode (related to search-space size)
- Episode scoring (similar to rule matching)
 - Structural Selectivity: how many ways can a cue WME match an episode (i.e. multi-valued attributes)

Word Sense Disambiguation Experimental Setup

- Input: <"word", POS>; Output: sense #; Result
 - Corpus: SemCor (~900K eps/exposure)

- Agent
 - Maintain context as n-gram
 - Query EpMem for context
 - If success, get next episode, output result
 - If failure, null

<u>Accuracy</u>	First	Second
2-gram	14.57%	92.82%
3-gram	2.32%	99.47%

Word Sense Disambiguation Results

Storage

Avg. 234 bytes/episode

Cue Matching

- All 1-, 2-, and 3-gram cues reactive
- 0.2% of 4-grams exceed 50msec.

N-gram Retrieval Scaling

Retrieval Time (msec) vs. Episodes (x1000)

Planning

Experimental Setup

- 12 automatically converted PDDL domains
 - Logistics, Blocksworld, Eight-puzzle, Grid, Gripper, Hanoi, Maze, Mine-Eater, Miconic, Mystery, Rockets, and Taxi
 - 44 distinct problem instances (e.g. # blocks)

- Agent: randomly explore state space
 - 50K episodes, measure every 1K

Planning *Results*

Storage

- Reactive: <12.04 msec./episode</p>
- Memory: 562 5454 bytes/episode

Cue Matching (reactive: < 50 msec.)

- 1. Full State: only smallest state + space size (12)
- 2. Relational: none
- 3. Schema: all (max = 0.08 msec.)

Video Games & Mobile Robotics Experimental Setup

Domain	Agent	Duration	Eval. Rate
TankSoar	mapping-bot	3.5M	50K
Eaters	advanced-move	3.5M	50K
Infinite Mario	[Mohan & Laird '11]	3.5M	50K
Rooms World	[Laird, Derbinsky & Voigt '11]	12 hours	300K

Hand-coded cues (per domain)

Data: Eaters

Data: Infinite Mario

Data: TankSoar

Data: Mobile Robotics

Summary of Results

Generality

- Demonstrated 7 cognitive capabilities
 - Virtual sensing, action modeling, long-term goal management, ...

Reactivity

- <50 msec. storage time for all tasks (ex. temporal discontiguity)
- <50 msec. cue matching for many cues</p>

Scalability

- No growth in cue matching for many cues (days!)
 - Validated predictive performance models
- 0.18 4 kb/episode (days months)

Evaluation

Nuggets

- Unprecedented evaluation of general episodic memory
 - Breadth, temporal extent, analysis
- Characterization of EpMem performance via taskindependent properties
- Soar's EpMem (v9.3.2) is effective and efficient for many tasks and cues!
- Domains and cues available

Coal

- Still easy to construct domain/ cue that makes Soar unreactive
- Unbounded memory consumption (given enough time)

For more details, see paper in proceedings of AAAI 2012