

Efficiently Implementing Episodic Memory

Nate Derbinsky University of Michigan

What is Episodic Memory?

2

- Long-term, contextualized store of specific events
 - Tulving, E.: Elements of Episodic Memory (1983)
- Functionally:
 - Architectural
 - Automatic
 - Autonoetic
 - Temporally indexed

The Promise of EpMem

- Virtual Sensing
- Action Modeling
- Retroactive Learning

Nuxoll, A.: Enhancing Intelligent Agents with Episodic Memory. (2007)

Efficient Implementation

Goals

- Develop a system that is practical for real-world tasks
- Establish baseline results for graph-based, taskindependent EpMem implementations

Assumptions

- Stored episodes do <u>not</u> change over time
- Qualitative Nearest Neighbor (NN) cue matching

Performance Challenges

- Consider a year of episodic memories...
 - 16 hours/day -> 42M to 420M episodes
 - 100 1000 features/episode (10-100 bytes/feature)
 - 21GB to 21TB
 - 2GHz CPU -> 10 seconds/scan

Laird, J.E., Derbinsky, N.: A Year of Episodic Memory (2009)

Integrating EpMem with Soar

Computer Science and Engineering at Michigan

Episodic Storage

- Faithfully capture Soar's top state of working memory
- Incrementally update indexing structures to facilitate efficient cue matching

7

- Minimize
 - Memory (monotonically increasing store)
 - Time (relatively frequent operation)

Episodic Storage: Naïve Implementation

Time	Working Memory		Episodic Store		
1		NIKON	1	019	
2			1	2	0101
3			1	2	3
June 24, 2009 8 Computer Science and Engineering at Michigan					

Compression via Global Memory Structure

9

- Observation
 - Agents tend to re-use
 WM structures
- Result

- Maintain a global record of unique structures
- Define episodes as "bag of pointers"

Gains via Interval Representation

- Observation
 - An episode will differ from the previous (and next) only in a relatively small number of features

Result

 Define episodes implicitly as temporal changes

Episodic Storage Summary

- Maintain record of unique WM structures
- Maintain associated intervals on WME addition/removal
 - Only process changes!

Episodic storage performs in time/space linear in the changes in working memory.

Cue Matching

 A cue is an acyclic graph, partially specifying a subset of an episode

 Cue matching returns the <u>most recent</u> episode containing the greatest number of cue <u>leaf elements</u>

Cue Matching: Naïve Implementation

CSE Minimizing Combinatorics via Two-Stage Matching

- 1. Evaluate *candidate* episodes based upon relatively inexpensive <u>surface</u> match
- 2. Perform combinatorial <u>structural</u> match (graph-match via CSP backtracking) ONLY on candidate episodes with a perfect surface score

End search on perfect match or no more episodes.

CSE Minimize Episode Evaluation via Interval Endpoint Search

Episode match score changes only at interval endpoints!

Interval Search Model

T = Total episodesDistance = Temporal distance to best match

A = Cue intervals (~ WM changes)

Interval search is dependent upon the number of candidate episodes evaluated.

SE Efficient Surface Evaluation via Incremental DNF Satisfaction

- sat(y=5) := (root AND map[1] AND square[1] AND y=5[1]) OR (root AND map[1] AND square[2] AND y=5[2]) OR (root AND map[1] AND square[3] AND y=5[3])
- Surface matching can be expressed as evaluating the satisfaction of a set of disjunctive normal form (DNF) Boolean equations
 - Each interval endpoint inverts the value of a single variable

une 24, 2009

DNF Model

- **U** = Unique nodes
- R = Stored intervals
 (~ changes)
- L = Cue node literals

DNF performance is dependent upon the changes in working memory.

Cue Matching Summary

- Minimize candidates by only considering episodes with <u>at least one cue node</u>
- Minimize combinatorics via two-stage matching policy
 - Exponential growth in the worst case
- Minimize episode evaluation via interval endpoint search
 - Linear growth in the worst case

CSE

 Minimize surface evaluation cost by <u>only processing cue</u> <u>node changes</u>

Episode Reconstruction

- The process of faithfully reproducing all episode content and structure within the agent's working memory
 - Collect contributing episode elements
 - Add elements to working memory

CSE Logarithmic Interval Query via Relational Interval Tree

- Collecting episode elements in an Interval representation is tantamount to an interval intersection query:
 - Collect all elements that started before and ended after time t

 By implementing an interval tree, intersection queries are answered in time <u>logarithmic</u> with respect to the changes in working memory

Empirical Domain

- TankSoar Mapping-Bot
 - 2500 features
 - 70-90% of perceptual
 WMEs change each
 episode
- 2.8GHz, 4GB RAM
- SQLite3

22

Empirical Results

1 million episodes (~1 episode/decision), 10 trials

Storage	Cue Matching*	Reconstruction**	Total
2.68ms 625-1620MB (0.64-1.66KB/ep)	57.6ms	22.65ms	82.93ms

* 15 cues** 50 random times

Future Work

- Better Evaluation
 - Characterize architecture performance with respect to properties of the environment, agent, cues, and task
 - Longer and multi-task runs
- Bound Cue Matching
 - Fast familiarity
 - Heuristic graph-match
- Algorithmic Variants
 - Selection bias: activation, arousal via appraisals, etc.
 - Characterize task vs. architecture performance

Evaluation

Nuggets

- Extended and improved Soar-EpMem implementation (9.1.1)
- 1M episode initial empirical study with predictive performance models

Coal

Limited evaluation

Further Reading

- Derbinsky, N., Laird, J.E.: *Efficiently Implementing Episodic Memory*. To Appear: Proceedings of the 8th International Conference on Case-Based Reasoning (2009)
- Laird, J.E., Derbinsky, N.: A Year of Episodic Memory. To Appear: Workshop on Grand Challenges for Reasoning from Experiences, 21st International Joint Conference on Artificial Inteligence (2009)