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What is Episodic Memory? 

•  Long-term, contextualized 
store of specific events 

–  Tulving, E.: Elements of Episodic Memory 
(1983) 

•  Functionally: 
–  Architectural 
–  Automatic 
–  Autonoetic 
–  Temporally indexed 
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The Promise of EpMem 

•  Virtual Sensing 
•  Action Modeling 
•  Retroactive Learning 
… 

Nuxoll, A.: Enhancing Intelligent Agents 
with Episodic Memory. (2007) 
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Efficient Implementation 

Goals 
•  Develop a system that is 

practical for real-world 
tasks 

•  Establish baseline results 
for graph-based, task-
independent EpMem 
implementations 

Assumptions 
•  Stored episodes do not 

change over time 

•  Qualitative Nearest 
Neighbor (NN) cue 
matching 
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Performance Challenges 

•  Consider a year of episodic memories… 
–  16 hours/day -> 42M to 420M episodes 
–  100 – 1000 features/episode (10-100 bytes/feature)  

•  21GB to 21TB 
•  2GHz CPU -> 10 seconds/scan 

Laird, J.E., Derbinsky, N.: A Year of Episodic Memory (2009) 
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Integrating EpMem with Soar 
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Episodic Storage 

•  Faithfully capture Soar’s top state of working memory 

•  Incrementally update indexing structures to facilitate 
efficient cue matching 

•  Minimize 
–  Memory (monotonically increasing store) 
–  Time (relatively frequent operation) 
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Episodic Storage:  
Naïve Implementation 

Time  Working Memory  Episodic Store 

1 

2 

3 
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Compression via  
Global Memory Structure 

•  Observation 
–  Agents tend to re-use 

WM structures 

•  Result 
–  Maintain a global 

record of unique 
structures 

–  Define episodes as 
“bag of pointers” 
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Gains via 
Interval Representation 

•  Observation 
–  An episode will differ 

from the previous (and 
next) only in a 
relatively small number 
of features 

•  Result 
–  Define episodes 

implicitly as temporal 
changes 
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Episodic Storage Summary 

•  Maintain record of unique WM structures 
•  Maintain associated intervals on WME addition/removal 

–  Only process changes! 

Episodic storage performs in time/space linear in the 
changes in working memory. 
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Cue Matching 

•  A cue is an acyclic graph, partially specifying a subset of 
an episode 

•  Cue matching returns the most recent episode 
containing the greatest number of cue leaf elements  
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Cue Matching:  
Naïve Implementation 

Time  N  N‐1  N‐2 

Episode 

Score 
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Minimizing Combinatorics via 
Two-Stage Matching 

1.  Evaluate candidate episodes based upon relatively 
inexpensive surface match 

2.  Perform combinatorial structural match (graph-match 
via CSP backtracking) ONLY on candidate episodes 
with a perfect surface score   

End search on perfect match or no more episodes. 
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Minimize Episode Evaluation via  
Interval Endpoint Search 

Episode match score changes only at interval endpoints! 
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Interval Search Model 

Interval search is dependent upon the number of 
candidate episodes evaluated. 
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Distance  = Temporal distance 
        to best match 

Δ    = Cue intervals  
       ( ~ WM changes ) 



Computer Science and Engineering at Michigan 

Efficient Surface Evaluation via 
Incremental DNF Satisfaction 

•  sat(y=5) := (root AND map[1] AND square[1] AND y=5[1]) OR 
                       (root AND map[1] AND square[2] AND y=5[2]) OR 
                       (root AND map[1] AND square[3] AND y=5[3]) 

•  Surface matching can be expressed as evaluating the satisfaction of a 
set of disjunctive normal form (DNF) Boolean equations 

–  Each interval endpoint inverts the value of a single variable 
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DNF Model 

DNF performance is dependent upon the changes 
in working memory. 
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R  = Stored intervals 
    ( ~ changes ) 
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Cue Matching Summary 

•  Minimize candidates by only considering episodes with 
at least one cue node 

•  Minimize combinatorics via two-stage matching policy 
–  Exponential growth in the worst case 

•  Minimize episode evaluation via interval endpoint search 
–  Linear growth in the worst case 

•  Minimize surface evaluation cost by only processing cue 
node changes 
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Episode Reconstruction 

•  The process of faithfully reproducing all episode content 
and structure within the agent’s working memory 
–  Collect contributing episode elements 
–  Add elements to working memory 
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Logarithmic Interval Query via 
Relational Interval Tree 

•  Collecting episode elements in an Interval representation 
is tantamount to an interval intersection query: 
–  Collect all elements that started before and ended after time t 

•  By implementing an interval tree, intersection queries are 
answered in time logarithmic with respect to the changes 
in working memory 
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Empirical Domain 

•  TankSoar Mapping-Bot 
–  2500 features 
–  70-90% of perceptual 

WMEs change each 
episode 

•  2.8GHz, 4GB RAM 
•  SQLite3 
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Empirical Results 

Storage  Cue Matching*  Reconstruc?on**  Total 

2.68ms 
625‐1620MB 

(0.64‐1.66KB/ep) 

57.6ms  22.65ms  82.93ms 
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Future Work 

•  Better Evaluation 
–  Characterize architecture performance with respect to 

properties of the environment, agent, cues, and task 
–  Longer and multi-task runs 

•  Bound Cue Matching 
–  Fast familiarity 
–  Heuristic graph-match 

•  Algorithmic Variants 
–  Selection bias: activation, arousal via appraisals, etc. 
–  Characterize task vs. architecture performance 
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Evaluation 

Nuggets 
•  Extended and improved 

Soar-EpMem 
implementation (9.1.1) 

•  1M episode initial 
empirical study with 
predictive performance 
models 

Coal 
•  Limited evaluation 
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Further Reading 

•  Derbinsky, N., Laird, J.E.: Efficiently Implementing 
Episodic Memory.  To Appear: Proceedings of the 8th 
International Conference on Case-Based Reasoning 
(2009) 

•  Laird, J.E., Derbinsky, N.: A Year of Episodic Memory.   
To Appear: Workshop on Grand Challenges for 
Reasoning from Experiences, 21st International Joint 
Conference on Artificial Inteligence (2009) 
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