EPISODIC MEMORY: A DBMS PERSPECTIVE

Nate Derbinsky

Outline

- Motivation
- Problem Characterization
- Soar-EpMem Implementation
- Results
- □ Future Work

What is Episodic Memory?

- Long-term, contextualized store of specific events
 - □ Tulving, E. (1983). Elements of Episodic Memory.
- Comparable to CBR

- Affords agents cognitive capabilities
- Constrained: (encoding, storage, retrieval)
 - Nuxoll, A. (2007). Enhancing Intelligent
 Agents with Episodic Memory.

Utility of Episodic Memory

- Episodic memory can be crucial to an agent's efficacy
- The functional
 specification may lead
 to a monotonically
 increasing store

Smyth, B. and Cunningham, P. (1996).
The Utility Problem Analysed: A Cased-Based Reasoning Perspective.

Problem: EpMem Integration

(id ^attrib value)

Nuxoll, A. and Laird, J. (2007). Extending Cognitive Architecture with Episodic Memory.

Problem: Storage

- Characteristics
 - Maintain episode content/structure
 - Relatively frequent
 - Monotonically increasing store
- Regularities
 - Temporal persistence
 - Structural persistence

Problem: Query

- Characteristics
 - Cue: deliberate, declarative, structured
 - Retrieval
 - Nearest-Neighbor (NN)
 - cardinality + activation (feature weighting)
 - Biased by recency
- Regularities
 - □ Literature points to structure
 - Surface vs. Deep
 - Cardinality bias

Storage ("Insert")

Working Memory Tree

- Maintains structural identity of all unique attribute-value pairs
- (id, parent, name, value)

Storage. A scheme for associating nodes of the Working Memory Tree with a temporal id.

Instance Indexing

Range Indexing

Working Memory Tree

Reconstruction

- Reconstructing an episode given a range representation is an <u>interval intersection query</u>
- Implemented Relational Interval Tree (RIT)
 - Adds computed attribute: "node"
 - Adds temporary, indexed relations to be populated at time of query

Interval Tree Queries

Interval Tree Queries

Supplementing RIT

- The RIT algorithm requires additional storage/ computation for stored intervals
- We can exploit alternative representations for two classes of ranges
 - "Now" ranges -> (id, start)
 - "Point" ranges -> (id, start)

Query ("Select")

- Brute force tactic (discrete time)
 - □ Instantiate ranges (w.r.t. time), find best "sum"
 - \square O(n), n = # episodes

Query ("Select")

- Smarter algorithm
 - Walk range endpoints, keep track of current/best "sum"
 - \square O(m), m = # pertinent ranges

Mapping Range Search -> RDBMS

Experimentation

Domain

- Single agent, fixed number of decisions
- Typically 100 WMEs
- 70-90% change
- □ 300 unique
- System
 - □ Soar 9.1.0-beta
 - SQLite3

Results: Memory Consumption

Results: (X, Y, Direction), Most Recent

Results: (X, Y, Direction)

Results: (X, Y, Direction)

Results: (X, Y, Direction)

Results: Input-Link

Future Work

- Proper query test-bed => regularities
 - => heuristics (ala "quality")
 - OLAP
 - 2-Stage Query
- Query optimization: OR's vs. AND's + statistics