The Boundary Forest Algorithm for
Fast Online Learning of
High-Dimensional Data

Nate Derbinsky

with: Charles Mathy, Jonathan Rosenthal,
José Bento, Jonathan S. Yedidia

&

e W
f /i
=N

%fsﬂep Research

The Problem

Approximate complicated functions
Approximate NN, Classification, Regression

Requirements
* |ncremental
* Fastto train & query

* Scale well given a large number of examples and/
or many dimensions

Boundary Forest

Online algorithm that performs effectively and efficiently
e Accuracy: “kNN

 Time: O(logN), both train & query

e Memory: O(N)

Composed of Boundary Trees, each...

» stores a subset of examples (i.e. instance-based/non-parametric)
— only those that inform “boundaries” (similar to incremental Condensed NN)

* incrementally builds a graphical search structure

— queries/trains by greedily following/appending-to a search tree w.r.t. distance
metricd(x, y)

A 2D Classification Example

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

Interleaved Train/Query (1)

Ground Truth Boundary Tree

18 June 2014 34th Soar Workshop - Ann Arbor, MI

Interleaved Train/Query (2)

Ground Truth Boundary Tree

.—! smesome ! i !_o
) !
.

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

Interleaved Train/Query (3)

Ground Truth Boundary Tree

.—! smesome ! i !_o
) !
.

A

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

Interleaved Train/Query (4)

Ground Truth Boundary Tree

.—! smesome ! i !_o
) !
.

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

Interleaved Train/Query (5)

Ground Truth Boundary Tree

.—! smesome ! i !_o
) !
.

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

Interleaved Train/Query (6)

Ground Truth Boundary Tree

.—! smesome ! i !_o
) !
.

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

10

Interleaved Train/Query (7)

Ground Truth Boundary Tree

18 June 2014

34th Soar Workshop - Ann Arbor, Ml

11

18 June 2014

Interleaved Train/Query (8)

Ground Truth Boundary Tree

34th Soar Workshop - Ann Arbor, Ml

12

Performance & Scaling

Boundary Tree 1-NN via Linear Scan

Improving Accuracy via Forests
Linear increase in memory + time

1 Tree 10 Trees

Trained=101, Stored=47 Trained=101, Stored=431

10000 test points: 69.57% in 4msec 10000 test points: 73.58% in 133 msec

18 June 2014 34th Soar Workshop - Ann Arbor, Ml 14

Classification Results
MNIST (60k training, 10k testing, 784 pixels)

Wall Clock Time (seconds)

N
_
BF(50, 50) 103 105.3

ETE o 2900 2900.0

Il | § & 3
ETEE o 3200 — 7S 353
55906
m 310 0.3 310.3 239200

Error, Euclidean Distance

BF(1,50) | 1-CNN_| RF(50,50) | 1NN __| _3-NN__| BF(50,50)

12.15% 6.70% 3.16% 3.09% 2.83% 2.32%

18 June 2014 34th Soar Workshop - Ann Arbor, MI 15

Regression Results
YearPredictionMSD

* 463,715 (training) / 51,630 (testing)
e 90 features
e ~30x faster than 1-NN

RMSE, Euclidean Distance

__LNN | 3NN __| BF(50,50)

14.05 11.59 10.41

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

16

Possible Research Directions in Soar

Real-time learning of...

e perceptual patterns (e.g. color classification)
e action models (e.g. motion regression)

* long-term perceptual memories (via aNN)

Evaluation

* Fast & online algorithm * Needs a metric; little

that’s easy to code/

exploration of dynamic

understand distance functions
* Good performance on * No work yet studying
classification, regression, structured/temporal

a-NN retrieval

 Many potential
applications

18 June 2014

representations

* Future: incorporating
dynamic priors

34th Soar Workshop - Ann Arbor, Ml

18

Thank You :)

Questions?

&

e W
f /i
=N

%fs&ep Research

18 June 2014 34th Soar Workshop - Ann Arbor, Ml

Algorithm Sketch

Required Parameters

* n,=number of trees

e k=maximum number of children

— Typically leads to eventual logarithmic scaling

e d(x,y)=distance metric

— Need not be true metric, no assumptions made
about properties

Algorithm Sketch

Boundary Tree

Query(y) Train(y)
* v=root ° n-= Query(y)
* loop + if ShouldAdd

— cand = children(v) | ou (n, y)

— i |children(v)| < k — Connect(n, y)

e cand=cand Uv

= Vmin= argminw<cand d(W, y)

— ifv,,, = v:break;

— V=V, ShouldAdd
Result * NN: True
 NN:v_, * Classification: Diff. Class
* Classification: class(v,) - Regression: Diff. by e

* Regression: value(v,)

Algorithm Sketch

Boundary Forest

Query(y) Train(y)
* fort,:trees * fort;:trees
— result[i]=t.Test(y) — t.Train(y)
Result Initialization
e NN: smallest d * Root(t;)=example[/]
e Classification: 1/d vote * r=remaining (n;-1)

* Regression: 1/d average — t.Train(Rand(r, 7))

