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The Problem

Approximate complicated functions
Approximate NN, Classification, Regression

Requirements
* |ncremental
* Fastto train & query

* Scale well given a large number of examples and/
or many dimensions




Boundary Forest

Online algorithm that performs effectively and efficiently
e Accuracy: “kNN

 Time: O(logN ), both train & query

e Memory: O(N)

Composed of Boundary Trees, each...

» stores a subset of examples (i.e. instance-based/non-parametric)
— only those that inform “boundaries” (similar to incremental Condensed NN)

* incrementally builds a graphical search structure

— queries/trains by greedily following/appending-to a search tree w.r.t. distance
metricd( x, y )




A 2D Classification Example
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Interleaved Train/Query (1)

Ground Truth Boundary Tree
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Interleaved Train/Query (2)

Ground Truth Boundary Tree
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Interleaved Train/Query (3)

Ground Truth Boundary Tree
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Interleaved Train/Query (4)

Ground Truth Boundary Tree
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Interleaved Train/Query (5)

Ground Truth Boundary Tree
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Interleaved Train/Query (6)

Ground Truth Boundary Tree
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Interleaved Train/Query (7)

Ground Truth Boundary Tree
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Interleaved Train/Query (8)

Ground Truth Boundary Tree

34th Soar Workshop - Ann Arbor, Ml

12



Performance & Scaling

Boundary Tree 1-NN via Linear Scan



Improving Accuracy via Forests
Linear increase in memory + time

1 Tree 10 Trees

Trained=101, Stored=47 Trained=101, Stored=431

10000 test points: 69.57% in 4msec 10000 test points: 73.58% in 133 msec
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Classification Results
MNIST (60k training, 10k testing, 784 pixels)

Wall Clock Time (seconds)

N
_
BF( 50, 50 ) 103 105.3

ETE o 2900 2900.0

Il | § & 3
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55906
m 310 0.3 310.3 239200

Error, Euclidean Distance

BF(1,50) | 1-CNN_| RF(50,50) | 1NN __| _3-NN__| BF(50,50)

12.15% 6.70% 3.16% 3.09% 2.83% 2.32%
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Regression Results
YearPredictionMSD

* 463,715 (training) / 51,630 (testing)
e 90 features
e ~30x faster than 1-NN

RMSE, Euclidean Distance

__LNN | 3NN __| BF(50,50)

14.05 11.59 10.41
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Possible Research Directions in Soar

Real-time learning of...

e perceptual patterns (e.g. color classification)
e action models (e.g. motion regression)

* long-term perceptual memories (via aNN)



Evaluation

* Fast & online algorithm * Needs a metric; little

that’s easy to code/

exploration of dynamic

understand distance functions
* Good performance on * No work yet studying
classification, regression, structured/temporal

a-NN retrieval

 Many potential
applications
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representations

* Future: incorporating
dynamic priors
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Thank You :)

Questions?
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Algorithm Sketch

Required Parameters

* n,=number of trees

e k=maximum number of children

— Typically leads to eventual logarithmic scaling

e d(x,y)=distance metric

— Need not be true metric, no assumptions made
about properties



Algorithm Sketch

Boundary Tree

Query(y) Train(y)
* v=root ° n-= Query( y )
* loop + if ShouldAdd

— cand = children(v) | ou ( n, y)

— i |children(v)| < k — Connect(n, y)

e cand=cand Uv

= Vmin= argminw<cand d( W, y)

— ifv,,, = v:break;

— V=V, ShouldAdd
Result * NN: True
 NN:v_, * Classification: Diff. Class
* Classification: class( v, ) - Regression: Diff. by e

* Regression: value( v, )



Algorithm Sketch

Boundary Forest

Query(y) Train(y)
* fort,:trees * fort;:trees
— result[i]=t.Test(y) — t.Train(y)
Result Initialization
e NN: smallest d * Root(t;)=example[/]
e Classification: 1/d vote * r=remaining (n;-1)

* Regression: 1/d average — t.Train(Rand(r, 7))



