Evaluating Methods for Long-Term HRI Studies Under Resource Constraints Status Update, Summer 2012

Nate Derbinsky

Motivation

Goal: long-term HRI research

Systems that support **high levels of robot autonomy** and **user trust** while supporting <u>real-time</u>
<u>interaction</u> for <u>days-weeks of continual operation</u>

Challenge: experimental-resource constraints

- Robot time sharing
- Study participants

Focus: Memory

Prior work has shown that long-term memory has the potential to make robotic companions more capable and believable

Open Issues

- When/what to encode
- Useful knowledge for learning/retrieval
- Efficient and scalable algorithms

Goal: Long-Term HRI Dataset

Data Collection. Long-term episodic traces of HRI in UH Robot House.

Learning Analysis

- General properties
 - Data size, rate, patterns, ...
- Task-relevant learning opportunities
 - User context, preferences, ...

Methodology

Issues

- Constrained resources
 - Participants
 - Robot
 - Study dev. & exec.
- Requirements
 - High fidelity
 - Broad coverage

Approach

- 1. Data Collection
 - Diverse sensors
 - Tablet interaction
 - Robot modeling
- 2. Learning Analysis
 - Hierarchical probabilistic scripts

Sensing Environment: UH Robot House

- Types of events
 - Electricity/water fluctuations
 - Discrete (e.g. drawer open/close, seat occupation)
- Event += time, place
 - User not directly sensed
- Logged centrally to MySQL

12 July 2012 6

"Robot" Interaction

 Gather timing data for Sunflower actions (movement, open/close drawer)

- 2. Extract parameters (assume ${\cal N}$)
- 3. Simulate and log actions via tablet

Sunflower Data

Methodology

- 3 trials/operation
 - Drawer (2): open, close
 - Move (12): 4 locations, 2 directions
- Data: time (s) from command input to action conclusion, rounded

Lessons Learned

- Movement time and variance were highly dependent upon starting/ ending location
- Drawer variance was negligible

Sunflower Movement Data

Cannot Approximate from Distance

Sunflower Movement Data

Must Measure Both Directions

Sunflower Model Future Work

- High variance -> need many more trials
 Still a useful methodology under resource constraint?
- Simplistic independence assumptions -> need to evaluate plausibility w.r.t. additional complexities e.g. human positioning/movement, drawer load
- Quantitative analysis of fidelity
 e.g. can a standard classifier tell the difference between actual time and model prediction?

Tablet Interface

- Web-based (HTML, CSS, JS, PHP)
 - Cross platform/device
 - Touch optimized (via iUI ~ iOS)
 - Easily extensible

- Logs events to MySQL
 - Draws on models for event data & interaction

Tablet Interface *Home*

Tablet Interface *Event Entry*

Tablet Interface Event Execution & Logging

Tablet Interface Robot Modeling

Tablet Interface Issues for Future Work

- Tablet lag/hang, resistive touchscreen, & mouse-centric rendering -> errors (e.g. fat finger, duplicate submission)
 - Consider better hardware (esp. screen)
 - Consider action confirmations ("Are you sure?")
- User needs to remember the events to trigger (e.g. open then close when robot transports)
 - Consider batch operations
- User needs to perform actions -> inaccurate timing of other actions
 - Evaluate impact
 - Consider human actor

Script Generation

<u>Problem</u>: how to generate scripts that are...

- Hierarchical. Describe HRI activities at various levels of abstraction
- Probabilistic. Incorporate flexible, yet structured stochasticity
 - Flexible: describes complex environmental regularities
 - Structured: assists in evaluating later learning
- Scalable. Can be easily and reliably manufactured and reproduced for multiple participants over longitudinal studies

Hierarchical Probabilistic Scripts

- Framework to...
 - describe script structure
 - visualize!
 - generate consistent scripts
- Instantiated for eat, work, clean, relax
 - Un+observable variables
 - Action sets and sequences
 - Controlled RNG seeds

- Features
 - Acyclic variable dep.'s
 - Flexible CPTs
 - Arbitrary depth
- Components
 - Soar: structure -> script
 - Java: describe & visualize, run Soar

Example Template Description

```
HPPlan myPlan = new HPPlan(PlanType.seg,
 new HPPVariable[]{ vDayOfWeek, vTimeOfDay, vHunger, vWork,
                    vConsumeMeal, vDoWork, vCleanHouse, vSeed },
 new HPPAction[]{
  new HPPAction("ConsumeMeal",
   new HPPConstraint[]{ new HPPBinaryConstraint(vConsumeMeal, true) }, myMealPlan),
  new HPPAction("DoWork",
   new HPPConstraint[]{ new HPPBinaryConstraint(vDoWork, true) }, myWorkPlan),
  new HPPAction("CleanHouse",
   new HPPConstraint[]{ new HPPBinaryConstraint(vCleanHouse, true) }, myCleanPlan),
  new HPPAction("Relax", new HPPConstraint[]{}, myRelaxPlan),
);
```

Example Variable Description

```
HPPVariable vConsumeMeal = new HPPBinaryVariable("ConsumeMeal", null, new HPPCPTBinaryEntry[] {
new HPPCPTBinaryEntry(new HPPConstraint[]{ new HPPConstraint(vHunger, Hunger.none.toString()) }, true, 0.05),
new HPPCPTBinaryEntry(new HPPConstraint[]{ new HPPConstraint(vHunger, Hunger.peckish.toString()) }, true, 0.4),
new HPPCPTBinaryEntry(new HPPConstraint[]{ new HPPConstraint(vHunger, Hunger, hungry.toString()) }, true, 0.9),
}):
HPPVariable vDoWork = new HPPBinaryVariable("DoWork", false, new HPPCPTBinaryEntry [] {
new HPPCPTBinaryEntry(new HPPConstraint[]{ new HPPBinaryConstraint(vWork, true) }, true, 0.95),
}):
HPPVariable vCleanHouse = new HPPBinaryVariable("CleanHouse", false, new HPPCPTEntry[] {
 new HPPCPTBinaryEntry(new HPPCPTBinaryEntry[]{
   new HPPBinaryConstraint(vConsumeMeal, true),
   new HPPConstraint(vDayOfWeek, DayOfWeek.monday.toString()),
   new HPPConstraint(vTimeOfDay, TimeOfDay.morning.toString())
 }, true, 0.80),
new HPPCPTBinaryEntry(new HPPCPTBinaryEntry[]{
   new HPPBinaryConstraint(vConsumeMeal, true),
   new HPPConstraint(vDayOfWeek, DayOfWeek.friday.toString()),
   new HPPConstraint(vTimeOfDay, TimeOfDay.evening.toString())
}, true, 0.05),
 new HPPCPTBinaryEntry(new HPPCPTBinaryEntry[]{ new HPPBinaryConstraint(vConsumeMeal, true) }, true, 0.25),
});
```

12 July 2012 21

Example Template Visualization (1)

Example Template Visualization (2)

Example Script Output

Script Input> year=2012 month=7 day=5 time=morning hunger=peckish work=true trial=3

Resulting KB:

Hunger=peckish

RelaxationToDo=true

RelaxationActivity=read

Work=true

WorkToDo=true

DoWork=true

ConsumeMeal=true

MealRobotBringsPlateMat=true

CleanHouse=false

WorkMusic=true

DayOfWeek=thursday

RNGSeed=1207050113

MealDrink=true

TimeOfDay=morning

WorkLocation=couch

BringDrinkToTable=true

MealToDo=false

MealTV=false

WorkDuration=ten

RelaxationPosition=lie

Resulting Script:

start -> SendRobotToTableWithPlateMat -> BringFoodToTable -> BringDrinkToTable -> SitOnCouch -> EatMeal -> GetDrink -> TurnOnMusic -> WorkToDo -> WorkForTenMinutes -> GetPeriodicalFromDrawers -> LieOnCouch -> RelaxToDo -> Read

Robot House Data

- Integration test/proof of concept
 - 1 day, 1 subject (me)
 - 3 parameter settings, 2 trials each
 - Rushed (e.g. did not "work for 6 minutes")
 - Noisy (e.g. ongoing Robot House experiments, my mistakes, tablet issues)
- Data
 - Script-generation parameters
 - MySQL dumps: sensor log, tablet events

Future Work

- Plan-structure GUI (undergrad)
- Data Collection (grad)
 - Solidify script template
 - Multiple participants, many days/week, many weeks
- Data analysis (grad)
 - Learning algorithms for sequences, regularities, causal & hierarchical induction

Thanks:)

Questions?

12 July 2012 27