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ABSTRACT

Effective and Efficient Memory for Generally Intelligent Agents

by

Nathaniel Leonard Derbinsky

Chair: John E. Laird

Intelligent systems with access to large stores of experience, or memory, can draw

upon and reason about this knowledge in a variety of situations, such as to improve

the efficacy of their learning, decision-making, and actions in the world. However,

little research has examined the computational challenges that arise when real-time

agents require access to large stores of knowledge over long periods of time.

This dissertation explores the computational trade-offs involved in enhancing intel-

ligent agents with effective and efficient memory. We exploit general properties of en-

vironments, tasks, and agent cues in order to develop scalable algorithms for episodic

learning (autobiographical memory); semantic learning (context-independent store

of facts and relations); and competence-preserving retention of learned knowledge

(policies to forget memories while maintaining task performance). We evaluate these

algorithms in Soar, a general cognitive architecture, for hours-to-days of real-time exe-

cution and demonstrate that agents with effective and efficient memory benefit along

numerous dimensions when tasked within a variety of problem domains, including

linguistics, planning, games, and mobile robotics.
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CHAPTER I

Introduction

The overarching goal of this dissertation is to facilitate the development of gener-

ally intelligent agents: artificial-intelligence (AI) systems that persist for long periods

of time in complex environments, autonomously contending with, and continually im-

proving performance on, multiple, complex tasks. Human beings are the only known

exemplars of general intelligence and one advantage that humans have over current

AI systems is effective and efficient access to large stores of experience, or memory.

Computationally, a memory mechanism captures, or encodes, some aspect of agent

experience; stores this information as internal knowledge, potentially changing it over

time; and provides access to retrieve portions of this experience at a later time (see

Appendix A for a more detailed breakdown of the dimensions along which memory

mechanisms differ). Agents with memory can draw upon and reason about their

experience in a variety of situations, such as to improve the efficacy of their learning,

decision-making, and actions in the world.

Two memory mechanisms that are commonly used in AI systems are episodic

and semantic. As first described in depth by Tulving (1972), episodic learning cap-

tures events and history that are embedded in individual experience, while semantic

learning extracts facts from their experiential context. Intuitively, semantic mem-

ories are general facts about the world that an individual “knows” (e.g. the main
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campus of the University of Michigan is located in Ann Arbor), whereas episodic

memories allow an individual to “remember” a personal history (e.g. the first time I

visited Ann Arbor I had lunch at Zingerman’s Deli - the pickles were so tasty! ). Prior

work suggests that incorporating these forms of memory can lead to agents that are

more capable in problem-solving, individually (Kuppuswamy et al., 2006; Nuxoll and

Laird , 2012) and collaboratively (Deutsch et al., 2008; Macedo and Cardoso, 2004);

are better able to account for human psychological phenomena, such as those relating

to language learning (Ball et al., 2010), memory blending (Brom et al., 2010), and

emotional appraisal (Gomes et al., 2011); and more believable as virtual characters

(Gomes et al., 2011), instructors (Taatgen et al., 2006), and long-term companions

(Lim et al., 2011). However, relatively little work has examined the computational

challenges associated with maintaining effective and efficient access to large amounts

of episodic and semantic experience over long periods of time.

The crux of the computational problem of memory for generally intelligent agents

arises in the trade-offs among the potential benefit of effective access to large stores

of prior experience; the time constraints imposed by dynamic environments; and the

computational boundedness of agents. Consider an agent that has incomplete and

uncertain perception of the world, but is tasked with a complex problem. For this

agent, memories of prior experience comprise one source of knowledge with which

to make decisions and act in the world; therefore, the more experience the agent

accumulates, and the more flexibly this knowledge can be mined for task-relevant in-

formation, the greater the likelihood that the agent will find it beneficial in achieving

its goal(s). However, if this agent is computationally bounded, then it does not have

unlimited storage capacity, and thus cannot accrue unlimited stockpiles of experi-

ence. Furthermore, if it is to remain reactive to environmental dynamics, it cannot

expend unlimited time encoding, organizing, and/or searching past experience for

useful knowledge. We provide greater detail for this argument in Chapter II, but it

2



is this interplay between the characteristics of environment, task, and agent that mo-

tivates and constrains the exploration of memory mechanisms that are both effective

and efficient.

This dissertation studies effective and efficient memory functionality that is useful

to agents in a variety of tasks and scales computationally to large stores of knowledge

over long agent lifetimes. We describe and evaluate efficient algorithms to support

effective episodic (Chapters IV) and semantic (Chapter V) memory mechanisms. We

also investigate a general framework to selectively retain, or forget, learned knowledge

(Chapter VI): policies that work well across a variety of problem domains, effectively

balancing the task performance of AI systems in complex tasks with reductions in

the time to retrieve, and memory to store, learned knowledge.

1.1 Research Approach

To make progress towards effective and efficient memory for generally intelligent

agents, we approach this research with three strategies: analysis of regularities in

environments, tasks, and agents; integration within a general cognitive architecture;

and empirical evaluation across a variety of problem domains. This section describes

each component of our approach, laying the groundwork for the remainder of the

dissertation. Throughout this discussion, we make reference to Table 1.1 (page 6),

which summarizes the contributions of this dissertation. The “Publications” row of

this table references the venues in which this work was originally published (where

the author label “D” indicates “Derbinsky”).

1.1.1 Environment, Task, and Agent Analysis

Discussed in detail in later chapters, our episodic and semantic memory models

commit to computational problems that are, in the worst case, intractable for gener-

ally intelligent agents in arbitrary domains. A major component of this dissertation is

3



the analysis of general properties of environments, tasks, and agents that can inform

algorithm design, and in practice lead to acceptable performance across a variety of

environments and tasks. The “Analysis” row of Table 1.1 summarizes these properties

for each of the memory models, and the “Algorithms” row lists the computational

elements that exploit these properties (where novel components are starred∗). We

apply database and information-retrieval techniques to effectively and efficiently sup-

port task-independent memory functionality, as well as a forgetting framework that

scales to large memory stores while maintaining task performance.

1.1.2 Architectural Integration

The development of generally intelligent agents is beyond the scope of this dis-

sertation. However, to make claims about the generality of our work, we integrate

the memory models and forgetting policies within Soar (Laird , 2012), a general cog-

nitive architecture. Chapter III provides further detail about cognitive architecture

as an appropriate methodology for our research, as well as justifies the selection, and

describes the details, of Soar. All of the algorithms described in this dissertation

have been implemented within Soar v9.3.2, which is open source and available as a

free download1. This work extends the set of learning mechanisms available to Soar

agents, including incremental episodic and semantic learning that scale to large stores

of knowledge over long periods of time. These algorithms commit to very general

knowledge representations and operations, and thus, as we discuss in later chapters,

the analyses and algorithms extend to cognitive architectures other than Soar, as well

as other agent-based systems that need to incorporate effective and efficient memory

functionality.

1http://sitemaker.umich.edu/soar
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1.1.3 Broad Empirical Evaluation

The “Evaluation” row of Table 1.1 summarizes the problem domains in which we

evaluate our work. In each of these domains, we focus on three primary metrics: (1)

reactivity, (2) scalability, and (3) task performance. First, for memory mechanisms to

be useful, it is important that they keep pace with environmental dynamics. Thus,

as described in more detail in Chapter III, we frequently reference 50 milliseconds as

an upper bound for computation time in order for a memory mechanism to remain

reactive to an agent’s environment. Our evaluation shows our memory-mechanism

algorithms are sufficiently efficient for a broad class of environments and tasks. We

also characterize the degree to which general properties of environments, tasks, and

agents affect memory mechanism performance. Second, for agents that persist for

long periods of time, memory mechanisms need to maintain reactivity and usefulness

even as stored knowledge grows large. The “Evaluation” row of Table 1.1 summarizes

the orders of magnitude to which we scale both stored knowledge, as well as agent

lifetime. This degree of scaling is on par with or much greater than prior work in

this space. Third, memory mechanisms are important to the degree that they are

useful in a variety of tasks. Therefore, in each of these domains, we focus on how our

memory mechanisms contribute to improving task performance. To the degree that

these improvements are general, we summarize them in the “Agent Benefits” row of

Table 1.1.

Finally, in Chapter VII, we revisit our research goals, evaluate the degree to which

this dissertation makes progress towards the requirements for generally intelligent

agents (Chapter II), and discuss fruitful directions for future work. We contend that

the breadth and depth of this evaluation forms a major dissertation contribution,

setting forth a benchmark suite that will be invaluable for future research of memory-

endowed agents.
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Table 1.1: Overview of dissertation contributions.

Episodic Memory Semantic Memory Selective Retention
Chapter IV Chapter V Chapter VI

A
n
a
ly

si
s

E
n
v
.
&

T
a
sk

P
ro
p
er
ti
es • Temporal contiguity

• Structural regularity

• Cue-feature
co-occurrence

• Cue-feature selectivity
(temporal/structural)

• Object cardinality

• Bias efficiency/locality

• Cue-feature
co-occurrence

• Cue-feature selectivity

• Temporal contiguity

A
lg

o
ri

th
m

s

N
o
v
el

∗

• Dynamic-graph index∗

• Discrimination
network∗

• Relational interval tree
(Kriegel et al., 2000)

• Inverted index
(Zobel and Moffat , 2006)

• Query optimization
(Chaudhuri , 1998)

• Locally efficient bias∗

• Base-level activation
approximation∗

• Decay map∗

• Base-level decay
approximation∗

• Binary parameter search
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• WSD1, planning, video
games, mobile robotics

• O(108) episodes,
days of real-time

• Lexical queries, WSD1,
mobile robotics

• O(106) objects,
hours of real-time

• Mobile robotics,
multi-player dice game

• O(105) memories,
days of real-time
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• Cognitive capabilities:
virtual sensing, detecting
repetition, action model-
ing, environmental mod-
eling, explaining behav-
ior, managing long-term
goals, predicting suc-
cess/failure

• Adaptive heuristic
reasoning bias

• Improved reactivity

• Access to large
knowledge bases

• Reduced memory
consumption

• Improved reactivity
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:
V
en

u
e • [DLL: AAAI 2012a]

• [LDL: AAAI 2012]

• [DLL: AAMAS 2012b]

• [LDV: BRIMS 2011b]

• [DL: ICCBR 2009]

• [DL: ICCM 2012a]

• [LDL: AAAI 2012]

• [DL: AAAI 2011]

• [LDV: BRIMS 2011b]

• [DLS: ICCM 2010]

• [DL: ICCM 2012a]

• [DL: ICCM 2012b]

1Word Sense Disambiguation (Navigli , 2009)
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CHAPTER II

Memory Requirements

In this chapter, we dissect memory systems in context of generally intelligent

agents. We begin by characterizing this class of agents, enumerating properties of

their structure, the types of task with which they contend, and the environment in

which they are embedded, with a focus on how these characteristics relate to and con-

strain their memory mechanisms. Given this breakdown, we then set forth functional

requirements on artificial memory mechanisms and discuss work in related research

fields apropos the degree to which it applies to and satisfies these requirements.

2.1 Environment, Task, and Agent Characteristics

In this section we characterize generally intelligent agents by enumerating prop-

erties of their environments, tasks, and structure. We will use this characterization

to develop requirements for memory mechanisms that support generally intelligent

agents, requirements that will lend constraint and structure to our work in the remain-

der of this dissertation. This breakdown draws heavily on work by Laird and Wray

(2010), in which they develop requirements for cognitive architecture, but specializes

the discussion with respect to memory systems embedded within these architectures.
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C1. Environment is Diverse with Complex and Interacting Objects

i. The agent can usefully interpret parts of the environment as if it consists of

independent objects.

ii. There are many objects.

iii. Objects have numerous, diverse properties.

iv. Some objects share similarities with other objects.

C2. Environment is Dynamic

i. The environment changes independently of the agent.

ii. The environment may change rapidly, relative to agent decision-making.

iii. Environmental dynamics are complex: the agent cannot always accurately

predict future states in detail.

iv. Some object properties (C1) change as a consequence of environment dy-

namics.

C3. Task-Relevant Regularities Exist at Multiple Time Scales

i. Environmental dynamics (C2) are not arbitrary: interactions are governed

by physical laws that are constant, often predictable, and frequently lead to

recurrence and regularity that impact the agent’s ability to achieve goals.

ii. Regularities in environmental dynamics exist at multiple time scales.

iii. Regularities in environmental dynamics lead to regularities in intra- and

inter-object property changes (C1, C2).
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C4. Tasks can be Complex, Diverse, and Novel

i. Tasks properties and goals are complex.

ii. The agent will contend with numerous tasks during its existence.

iii. The agent will contend with tasks with novel properties and goals.

iv. Tasks vary in the time scales required to achieve them: some are close to the

timescale of dynamics in the environment (C2) while others require extended

behavior.

C5. Agent/Environment/Task Interactions are Complex and Limited

i. The environment is partially observable: it is impossible for the agents to

perceive the entire state of the world.

ii. Agent sensors are noisy and may be occluded by objects (C1) and environ-

mental dynamics (C2), making agent perception incomplete and uncertain.

C6. Agent Computational Resources are Limited

i. The agent has physical limits on its computational resources relative to dy-

namics of the environment (C2).

ii. Agent interactions (C5) within the complex (C1), dynamic (C2) environment

and with complex tasks (C4), given bounded computational resources, make

perfect rationality impossible.

C7. Agent Existence is Long-Term and Continual

i. Agent existence is long-term relative to primitive interactions with the envi-

ronment (C2, C5).

ii. For the duration of its existence, the agent is always present in its environ-

ment.

9



2.2 Requirements for Memory Systems

Based upon the characteristics above, we derive the following requirements to con-

strain implementations of memory systems for generally intelligent agents. We refer

to these requirements throughout the remainder of this dissertation when developing

functional specifications, as well as evaluating our work. Once again, these borrow

heavily from the cognitive-architecture requirements of Laird and Wray (2010), but

are specialized for memory systems.

R1. Support Incremental, Online Learning

Given that the agent. . .

i. is continually (C7) embedded within an environment that changes quickly

and in complex ways (C2); and

ii. must assimilate and exploit environmental regularities (C3), when and as

they become apparent, to effectively contend with diverse ongoing and future

tasks (C4);

the agent requires memory systems that. . .

i. support incremental encoding and storage of new information, such that the

contents of the agent’s internal knowledge cache keep pace with environmen-

tal dynamics; and

ii. support online knowledge retrievals, such that agent reasoning reflects and

takes advantage of its latest observations of the state of the world.

R2. Support Diverse, Comprehensive Learning

Given that the agent. . .

i. is embedded within a complex environment (C1) for a long-term existence

(C7); and
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ii. must assimilate and exploit environmental regularities (C3), which occur

at varying time scales, including those apparent from a single instance or

spread across time, in order to effectively contend with diverse tasks (C4)

that entail complex interactions (C5);

the agent requires memory systems that. . .

i. individually support diverse forms of learning, such that optimized mecha-

nisms will efficiently and accurately detect specific types of environmental

regularities; and

ii. conjointly support comprehensive coverage of learning, such that the agent

is broadly sensitive to, as well as able to represent and apply, a wide variety

of task-specific knowledge about the world.

R3. Support Diverse Knowledge Representation

Given that the agent. . .

i. is embedded within a complex environment (C1) for a long-term existence

(C7); and

ii. must assimilate and exploit environmental regularities (C3) in order to ef-

fectively contend with diverse tasks (C4) that entail complex interactions

(C5);

the agent requires memory systems that. . .

i. support representing diverse types of knowledge, including contextualized

memories of experiences, as well as more generalized facts, beliefs, and rela-

tions about objects in the world.
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R4. Scale Efficiently to Large Bodies of Knowledge

Given that the agent. . .

i. is embedded within a complex environment (C1) that changes quickly (C2)

over a long-term, continual existence (C7); and

ii. is contending with diverse tasks (C4) entailing complex interactions (C5);

the agent requires memory systems that. . .

i. support efficient incorporation of new information and access to existing

knowledge, such that agent retrievals, drawing from the wealth of available

knowledge that arises from environmental and task experience over a long

lifetime, are timely, given the rate of environmental dynamics.

R5. Support Effective Access to Knowledge

Given that the agent. . .

i. must assimilate and exploit environmental regularities (C3) in order to ef-

fectively contend with numerous tasks (C4) entailing complex interactions

(C5); and

ii. is embedded within a dynamic environment (C2) and is limited with respect

to its computational resources (C6);

the agent requires memory systems that. . .

i. support effective access to knowledge about environmental regularities and

past task performance, such that retrievals improve the agent’s ability to

contend with the complexities of its current situation.
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R6. Support a Variety of Tasks

Given that the agent. . .

i. is embedded within a complex environment (C1) that changes quickly (C2)

over a long-term, continual existence (C7); and

ii. must assimilate and exploit environmental regularities (C3), given limited

computational resources, in order to effectively contend with numerous tasks

(C4) that entail complex interactions (C5);

the agent requires memory systems that. . .

i. encapsulate environmental regularities and interaction complexities that are

independent of task and that occur at time scales greater than that of the

agent, thereby reducing the complexity of learning task-dependent knowl-

edge.

Table 2.1 illustrates how the characteristics (C1-C7) of environment, task, and

agent, as described above, together impose these requirements (R1-R6) upon mem-

ory systems for generally intelligent agents. While all of these characteristics constrain

memory systems, it is useful to note that task independence of the mechanism (R6)

draws upon the breadth of the challenges with which generally intelligent agents con-

tend, and all requirements are influenced by the constraint of dealing with numerous,

complex, and novel tasks (C4), a property that typically does not apply to short-lived,

task-dependent systems. As a result, most prior approaches don’t provide solutions

that meet all of these requirements, as we describe in the next section.
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Table 2.1: The requirements on memory systems for generally intelligent agents im-
posed by characteristics of environment, task, and agent

Characteristics
C1

Complex
Environment

C2
Dynamic

Environment

C3
Regularities in
Environment

C4
Complex

Tasks

C5
Complex

Interactions

C6
Limited
Agents

C7
Extended

Agent

R1 Incremental
Learning

X X X X

R2 Comprehensive
Learning

X X X X X

R3 Diverse
Representation

X X X X X

R4 Scale
Efficiently

X X X X X

R5 Effective
Access

X X X X XR
e
q
u
ir

e
m

e
n
ts

R6 Task
Independence

X X X X X X X

2.3 Work in Related Research Fields

The characteristics of environment, task, and agent structure impose significant

requirements upon memory systems that must be considered and satisfied concur-

rently. In this section we briefly and broadly discuss research in related fields and the

degree to which their efforts relate to and satisfy these requirements in the context

of memory systems.

2.3.1 Cognitive Modeling/Architecture

It is common for cognitive architectures and models to commit to task-independent

approaches (R6) to the incremental and online encoding (R1) of arbitrary environmen-

tal perception (R3) as internal, declarative knowledge, as well as the later retrieval

using diverse (R5), and often cognitively inspired, methods (Langley et al., 2009).

However, these mechanisms typically do not scale (R4) to large knowledge bases (e.g.

Douglass et al., 2009; Douglass and Myers , 2010). A prominent class of exception

includes those architectures, like Soar (Laird , 2012), that utilize the Rete algorithm

for efficient matching of procedural knowledge (Forgy , 1982; Doorenbos , 1995). Much

work must still be done to explore the full breadth of learning mechanism implemen-
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tation and integration (R2) that must be in place to effectively capture and apply

the variety of task and environmental regularities encountered by long-living agents,

including those of autobiographical agent experience (Nuxoll and Laird , 2012) and

appraisals (Marinier et al., 2009), as well as statistical regularities in environmental

and task demands (Anderson and Schooler , 1991; Schooler and Anderson, 1997).

We now discuss some common cognitive architectures apropos of memory and

selective-retention mechanisms.

2.3.1.1 ACT-R

ACT-R (Anderson et al., 2004) has a declarative module that has been applied

to model a large number of reasoning and memory phenomena in humans; its knowl-

edge representation and functionality informs much of our work in Chapter V. ACT-R

does not, however, have an episodic memory, though work has been done to model

episodic-memory effects using the declarative memory (e.g. Anderson and Ross , 1980;

Altmann and Gray , 1998). ACT-R does implement a selective-utilization policy,

wherein declarative chunks below an activation threshold cannot be retrieved; how-

ever, decayed chunks are never removed, as activation spread and merging might

overcome the effects of historical inactivity. Prior work has demonstrated that the

ACT-R declarative module does not scale to large knowledge bases (e.g. Douglass

et al., 2009; Douglass and Myers , 2010) and so it is common to interface the memory

with a declarative database or external processes for specific tasks.

2.3.1.2 EPIC

Research on EPIC (Meyer and Kieras , 1997) focuses on achieving quantitative

fits to human behavior, especially on tasks that involve interacting with complex

devices that involve visual, auditory, and tactile modalities. The EPIC conceptual

organization calls for a long-term declarative memory, but makes no commitment as
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to knowledge representation or retrieval processes/implementation. Models instead

encode long-term knowledge as production rules and EPIC makes use of a rete (Forgy ,

1982) to scale to large numbers of rules.

2.3.1.3 LIDA

The LIDA framework (Franklin and Patterson, 2006; Snaider et al., 2011) has both

a transient episodic memory for events and a long-term declarative memory for facts

and autobiographical memories, both of which can be cued via the workspace. LIDA

encodes “events” to episodic memory when attentional “codelets” (implemented as

arbitrary code) form coalitions to select knowledge for “conscious broadcast.” Long-

term learning, or consolidation, occurs off-line: “perhaps largely during REM sleep,

the entire, as yet undecided contents of transient episodic memory are written (en-

coded) into declarative memory.” LIDA does not make strong commitments to knowl-

edge representations or processes, only providing default implementations of certain

modules (e.g. a sparse distributed memory for episodic (Snaider and Franklin, 2011),

the knowledge for which is represented within the architecture as bit vectors). Work

on software to implement the architecture began in 2009 and it is currently released

in beta form. Some work has applied LIDA for cognitive modeling (Madl et al., 2011),

though no work has been published for real-time agents.

2.3.1.4 Icarus

The Icarus architecture (Langley et al., 2004; Langley and Choi , 2006) has hier-

archical, long-term knowledge of concepts and skills. While Icarus implements skill

learning through analysis of successful problem-solving, it does not detail methods

for acquisition of new conceptual knowledge. Icarus does not have an episodic mem-

ory, though preliminary work has been done to represent and reason about time and

temporally organized beliefs (Stracuzzi et al., 2009). In that work, Stracuzzi et al.
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indicate that while all beliefs are retained in Icarus (i.e. there is no explicit forgetting

policy), some details may be lost when reconstructing the details of event sequences

from temporal beliefs. Icarus has been applied in complex environments, such as

for human-robot interaction (Trivedi et al., 2011) and as a non-player character in

a first-person shooter game (Choi et al., 2007), but details have not been published

about the duration of execution, nor about agent reactivity. Of particular concern

is that Icarus processes each perceptual state in its entirety, regardless of processing

time available, an architectural commitment that may interfere with reactivity in

time-sensitive domains.

2.3.2 Case-Based Reasoning

Case-based reasoning (Kolodner , 1993) research focuses on methods for effectively

accessing (R5), adapting, and incrementally updating (R1) prior case information to

solve specific problems. While work has been done in case-base maintenance meth-

ods (e.g. Cummins and Bridge, 2009) to combat issues of case utility in large case

bases (Smyth and Cunningham, 1996), research typically does not focus on online

problem solving at the pace of environmental dynamics (R1), nor are most systems

evaluated over long lifetimes (R4). Most work is highly task-specific (R6), including

static, problem-specific case formats (R3), as well as problem-optimized case retrieval,

adaptation, revision, and retention algorithms (R2).

2.3.3 Information Retrieval/Database Management Systems

The Information Retrieval (Singhal , 2001) and Database Management System

(Ramakrishnan and Gehrke, 2003) research communities have developed substantial

literature over the last 50 years (e.g. Codd , 1970; Agrawal and Srikant , 1994; Gray

et al., 1997; Chaudhuri , 1998; Zobel and Moffat , 2006) on efficient data structures

and techniques (R4) for supporting task-independent (R6), expressive queries (R5),
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on large amounts of diverse data (R3), as well as batch analytical and statistical

processing (R2). However, while it is common for problem specifications to detail

properties of queries, users, and data services (e.g. Agrawal et al., 2000), it is rare for

research in these fields to focus on dynamic interactions with complex environments

across numerous tasks. For example, recent work on guided interaction (e.g. Nandi

and Jagadish, 2011) and query reformulations (e.g. Rieh and Xie, 2006) posit human-

database collaboration to prune large, complex, and potentially dynamic query spaces,

but these systems tend to be very specific to a constrained knowledge representation

(e.g. keyword search) or task (e.g. information seeking). It is also rare to find work in

these fields that contributes to issues of online (R1) or comprehensive (R2) learning of

complex environmental and task regularities, nor effective forms of data access (R5)

to support agent performance across a variety of problem domains.

2.3.4 Knowledge Representation and Reasoning

Knowledge Representation and Reasoning (KRR; Davis et al., 1993) is an area

of artificial-intelligence research that focuses on the epistemological and ontological

issues of describing the diversity of the world (R3), paying particular attention to

the effects on processes such as reuse (R6) and inference (R1, R5), typically with

respect to properties of expressiveness, validity, and efficiency (R4). There is work

applying KRR techniques to a variety of problems, such as planning (temporally and

spatially), decision-making, and reasoning under uncertainty. However, the focus is

typically not on diverse learning methods (R2) for numerous, novel tasks in complex

domains.

It is also infrequent for knowledge bases or inference methods to make claims

as to scaling (R4) to knowledge stores required for long-living, generally intelligent

agents in dynamic environments. We now contrast our goals with three KRR sys-

tems that are exceptions to this trend: Algernon (Crawford and Kuipers , 1991), Cyc
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Table 2.2: The degree of requirements coverage in related fields of research
Requirements

R1 R2 R3 R4 R5 R6
Incremental

Learning
Comprehensive

Learning
Diverse

Representation
Scale Efficiently Effective Access

Task
Independence

Cognitive Modeling/
Architecture

� � � � �

Case-Based
Reasoning

� � � � �

Information Retrieval/
Databases

� � � � �F
ie

ld
s

Knowledge
Representation

� � � � �

(Lenat , 1995), and Scone (Fahlman, 2006). These KRR systems were developed as

independent modules for use within AI systems, such as theorem proving (e.g. Re-

molina, 2001; Siegel et al., 2005), qualitative reasoning (e.g. Rajagopalan, 1995; For-

bus and Hinrichs , 2006; Forbus et al., 2009), question answering (e.g. Rickel , 1995;

Lenat et al., 2010), and language understanding (e.g. Tribble and Rosé, 2006; Curtis

et al., 2006). However, there has been little work that has investigated the issues

that arise when integrating knowledge-access mechanisms with goal-driven, real-time

agents. For example, there has been little work that investigates how to design agents

that effectively query these knowledge bases for task-relevant information (lisp func-

tions in Algernon and Scone; nth-order logic expressions in Cyc). Furthermore, while

all three systems implement computational strategies for scalable query answering

(Access-Limited Logic in Algernon; over 1000 competing heuristic modules in Cyc;

and parallel marker-passing algorithms in Scone), there have not been thorough eval-

uations of these systems in dynamic environments, and so it is unclear as to whether

they are suitably efficient for real-time agents.

2.3.5 Summary

The coverage of requirements in related fields of research is summarized in Table

2.2, where an empty cell signifies little-to-no contribution, an open box (�) signifies

partial contribution, and a crossed box (�) signifies significant benefaction. From this
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table, we gather three important points. First, the requirements that constrain the

development of memory mechanisms, as imposed by the context of generally intelli-

gent agents, are numerous and challenging in concurrence, such as scaling efficiently

(R4), in a task independent fashion (R6), given a diversely represented (R3), com-

prehensive knowledge store (R2). Second, while it is unsurprising that no work in

an individual field can lay claim to concurrently satisfying all of these requirements,

there not work in any field that fully satisfies R2, the comprehensive spectrum of

diverse learning mechanisms that memory systems must support to achieve human-

level intelligence. Finally, there appear to be opportunities for cross-fertilization to

more completely satisfy requirements within a single realm.

This dissertation applies database and information-retrieval techniques to effec-

tively (R5) and efficiently (R4) support task-independent (R6) memory within a gen-

eral cognitive architecture, extending the set of comprehensive learning mechanisms

(R2) to include episodic (Chapter IV) and semantic learning (Chapter V). Addition-

ally, Chapter VI evaluates a framework to support scalable, incremental learning (R1)

by forgetting memories (R4) in a task-independent (R6) fashion, while still maintain-

ing task performance (R5). This work will improve the coverage of comprehensive

learning (R2) and efficient scaling (R4), in context of cognitive architecture, while

maintaining existing requirement coverage.
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CHAPTER III

Research Approach: Cognitive Architecture

One common approach to computational memory modeling is to develop mecha-

nisms that are specialized for a specific problem or class of problems. For example,

as discussed in Section 2.3.2, case-based reasoning systems commonly employ this

tactic: the case format, as well as case retrieval, adaptation, revision, and retention

algorithms, are specific to each task. By definition, this approach does not satisfy re-

quirement R6 (task independence) and thus is not appropriate for research in context

of generally intelligent agents.

A similar, though more general, approach to memory modeling is to investigate

mechanisms that are specialized for a class of data types or representations. For

example, many systems require that knowledge in memory adhere to a pre-specified

“event” format (e.g. Tecuci and Porter , 2007a; Deutsch et al., 2008; Brom et al., 2010).

These systems may afford agents added capability across a variety of problems, but

this approach does not satisfy requirement R3 (diverse representations) and thus is

also not appropriate for research in context of generally intelligent agents.

Yet another approach involves studying memory mechanisms, independent of

agent architecture, goals, and behavior. As a prominent example, the rational analysis

of memory (Anderson, 1991; Anderson and Schooler , 1991; Schooler and Anderson,

1997) posits that since the human brain optimizes behavior for task performance,
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the best method for understanding human cognition lies in environmental and task

analysis, rather than attempting to analyze specific human problem-solving methods.

While useful in analyzing, developing, and evaluating individual memory mechanisms,

this isolated approach considers only the structure, regularities, and interactions of

environments and tasks, ignoring those of the agent (Simon, 1991). As a conse-

quence, it is difficult to synthesize and apply these specifications within the context

of a generally intelligent agent and leaves many integration questions unanswered.

To make progress towards memory for generally intelligent agents, our research ap-

proach is to study memory mechanisms in context of a general cognitive architecture.

The remainder of this chapter discusses cognitive architecture as a research paradigm

that is appropriate for this investigation; justifies the selection of Soar (Laird , 2012)

as the most suitable architecture in context of our research goals; and both describes

and analyzes details of Soar that will be pertinent throughout the remainder of this

dissertation.

3.1 Cognitive Architecture

Research into cognitive architecture aims to develop and understand human-level

intelligence across a diverse set of tasks and domains (Newell , 1990; Langley et al.,

2009). A cognitive architecture is a specification of those aspects of cognition that

remain constant throughout the lifetime of an agent. These fixed components in-

clude short- and long-term memories of the agent’s beliefs, goals, and experience;

the representation of elements contained within these knowledge stores; functional

processes that apply agent knowledge to produce behavior; and learning mechanisms

that adapt agent knowledge over time. Cognitive architecture applies a systems-

level approach to artificial-intelligence research, investigating how the integration of

numerous computational mechanisms supports complex and adaptive behavior.

The last forty years witnessed the conception and development of many, diverse
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cognitive architectures, but nearly all individual research efforts strive towards at least

one of the following three goals: (1) biological plausibility, (2) psychological plausibil-

ity, and (3) agent functionality. For instance, systems such as Leabra (O’Reilly , 1996)

attempt to computationally explore how intelligence arises from circuits of neurons

and how architectural mechanisms and processes correspond to neurobiological data

regarding brain regions and topological connectivity. By contrast, systems such as

EPIC (Meyer and Kieras , 1997) and ACT-R (Anderson et al., 2004) are typically

applied at a layer above biological mechanisms and attempt to capture and model

details of human performance, such as behavioral timing and memory recall errors, in

a wide range of cognitive tasks. Finally, architectures like Soar (Laird , 2012) may look

to humans for inspiration, but focus on developing artificial agents that demonstrate

human-level intelligence, even if they function in ways, or make use of computational

mechanisms, that very different from that of humans.

3.2 Architecture Selection

We consider the following two metrics when comparing architectures for evaluating

memory mechanisms for generally intelligent agents. First, the architecture must not,

a priori, invalidate a requirement for memory systems (see Section 2.2); if this were

the case, candidate memory mechanisms would likely not satisfy the requirement

either. As an example, consider an architecture in which agent state is represented as

a fixed-length binary buffer: given such a constraint, it would be difficult to evaluate

the degree to which a memory mechanism satisfies R3, that of supporting diverse

knowledge representation. Second, we consider the degree to which the architecture

can support experimentation across the dimensions (see Section 2.1) characterizing

generally intelligent agents, the tasks with which they contend, and the environments

in which they are embedded. Given these metrics, we discuss below the reasons for

which we chose the Soar cognitive architecture (Laird et al., 1987; Newell , 1990; Laird
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and Rosenbloom, 1996; Laird , 2008, 2012) as a platform upon which to pursue our

research goals.

3.2.1 Task-Independent, Effective and Efficient Access to Diverse Knowl-

edge (R3-R6)

Especially relevant for this work is Soar’s considerable history of efficiently rep-

resenting and bringing to bear large bodies of knowledge to solve diverse problems

using a variety of methods (Doorenbos , 1995; Laird and Rosenbloom, 1996). This si-

multaneous focus on efficiency and generality uniquely distinguishes Soar from other

agent architectures.

At one extreme, some systems boast impressive generality and applicability, as ex-

emplified by the impressive number and variety of psychological phenomena captured

by ACT-R models (Anderson et al., 2004). However, these systems rarely consider

the computational implications of scaling their theoretical commitments to the large

knowledge bases accumulated over long agent lifetimes. For instance, the ACT-R

declarative module has been shown not to scale to large stores of declarative knowl-

edge (Douglass et al., 2009; Douglass and Myers , 2010). However, because ACT-R

models primarily focus on explaining details of temporally constrained psychological

experiments, research progress is not typically impeded and, until recently, little re-

search has explored the degree to which the ACT-R theory can scale to the conditions

with which generally intelligent agents grapple.

Diametrically opposed are systems that demonstrate competency on a constrained

set of tasks and knowledge representation, while not contending with the overwhelm-

ing quantity and diversity of challenges with which generally intelligent agents contend

in complex domains. For instance, Cyc (Lenat , 1995) demonstrates comprehensive

data integration and hybrid inference capabilities over unparalleled size and scope of

knowledge, but does not have search-control mechanisms necessary to contend with
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simple real-time planning and problem-solving tasks.

By contrast, the current iteration of Soar (Laird , 2012) implements a fully rela-

tional, symbolic representation (R3) across a variety of task-independent (R6) mem-

ory systems that have been shown to scale (R4) to large stores of knowledge over

long agent lifetimes. Consider, for instance, the TacAir-Soar system (Jones et al.,

1999), which was composed of thousands of symbolic production rules and managed

722 scheduled flights of fixed-wing aircraft that flew during an operational training

exercise that ran for 48 continuous hours.

Building on Soar’s existing implementation, it is tractable to study and evaluate

memory mechanisms that are populated with large data sets, such as the WordNet

lexicon (Miller , 1995), and experiences from agents, such as robots in real and simu-

lated environments, that persist for days of cognitive real-time. At these time scales

and degree of knowledge access, we can also begin to study how memory systems

interact with other cognitive mechanisms (R5), such as procedural learning (Laird

et al., 1986; Nason and Laird , 2004), including their relative strengths and limita-

tions in situations and tasks approaching that of human-level. Additionally, Soar’s

generality of knowledge representation and reasoning allows us to not only study a

large spectrum of tasks, but to also extrapolate and apply our results to other systems

and architectures.

3.2.2 Support for Complex Tasks, Environments, and Interactions (C1-

C5)

The degree to which the agent architecture supports systems integration and de-

ployment directly affects the ability to evaluate memory mechanisms on a variety of

tasks in complex environments. While primarily an issue of engineering, this is a valid

practical consideration that is crucial in the successful pursuit of our research goals.

Soar supports a variety of programming languages (e.g. C++, Java, and Python)
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on all major operating systems (Windows, Mac OS, Linux, and iOS) and has been

interfaced in diverse execution environments, including RL-Glue (Tanner and White,

2009; Mohan and Laird , 2011); game systems, such as ORTS (Buro, 2003; Wintermute

et al., 2007), ATARI (Wintermute, 2010) and Quake (Laird , 2001); mobile music

generation (Derbinsky and Essl , 2011, 2012); and robotics simulation and hardware

platforms (Laird et al., 2011b).

This broad applicability sharply contrasts agent architectures that are limited by

language/platform (e.g. Lisp requirement of ACT-R: Anderson et al., 2004), as well

as those that exist only as partial implementations (e.g. Icarus & Clarion: Langley

et al., 2004; Langley and Choi , 2006; Sun, 2006) or frameworks (e.g. LIDA: Franklin

and Patterson, 2006; Snaider et al., 2011).

3.3 The Soar Cognitive Architecture

We now discuss the technical and theoretical details of Soar relevant to our re-

search of memory mechanisms. We begin with a description of Soar, and then analyze

the degree to which the architecture lays foundations for satisfying the requirements

(R1-R6) of memory systems for generally intelligent agents (Section 2.2).

3.3.1 Architecture Overview

Figure 3.1 shows the structure of Soar. At the center is a symbolic working mem-

ory that represents the agent’s current state. Functionally, working memory serves as

a common substrate upon which to represent arbitrary and novel combinations and

compositions of symbols (R3): it is here that perception, goals, retrievals from long-

term memory, external action directives, and structures from intermediate reasoning

are jointly represented as a connected, directed graph. The primitive representational

unit of knowledge in working memory is a symbolic triple (identifier, attribute, value),

termed a working-memory element, or WME. The first symbol of a WME (identi-
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Figure 3.1: The structure of the Soar cognitive architecture (Laird , 2012).

fier) must be an existing node in the graph, whereas the second (attribute) and third

(value) symbols may be either terminal constants or non-terminal graph nodes. Mul-

tiple WMEs that share the same identifier are termed an “object,” and the set of

individual WMEs sharing that identifier are termed “augmentations” of that object.

Procedural memory stores the agent’s knowledge of when and how to perform ac-

tions, both internal, such as querying long-term declarative memories, and external,

such as controlling robotic actuators. Knowledge in this memory is represented as

if-then rules. The conditions of rules test patterns in working memory and the actions

of rules add and/or remove working-memory elements. Soar makes use of the Rete

algorithm for efficient rule matching (Forgy , 1982) and retrieval time scales to large

stores of procedural knowledge (Doorenbos , 1995). However, the Rete algorithm is

known to scale linearly with the number of elements in working memory, a computa-

tional issue that motivates maintaining a relatively small working memory (discussed

further in Chapter VI).

Soar learns procedural knowledge via chunking (Laird et al., 1986) and reinforce-
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ment learning (RL; Nason and Laird , 2004) mechanisms. Chunking creates new

productions: it converts deliberate subgoal processing into reactive rules by com-

piling over production-firing traces, a form of explanation-based learning (Dejong

and Mooney , 1986). If subgoal processing does not interact with the environment,

the chunked rule is redundant with existing knowledge and serves to improve per-

formance by reducing deliberate processing. However, memory usage in Soar scales

linearly with the number of rules, typically at a rate of 1-5 KB/rule, which motivates

forgetting of under-utilized productions (discussed further in Chapter VI).

Reinforcement learning incrementally tunes existing production actions: it up-

dates the expectation of action utility, with respect to a subset of state (represented

in rule conditions) and an environmental or intrinsic reward signal. A production

that can be updated by the RL mechanism (termed an RL rule) must satisfy a few

simple criteria related to its actions, and is thus distinguishable from other rules (a

distinction that is relevant to forgetting productions, discussed further in Chapter

VI). When an RL rule that was learned via chunking is updated, that rule is no

longer redundant with the knowledge that led to its creation, as it now incorporates

information from environmental interaction that was not captured in the original

subgoal processing.

Soar incorporates two long-term declarative memories, episodic (discussed in Chap-

ter IV) and semantic (discussed in Chapter V). Broadly speaking, episodic mem-

ory incrementally encodes and temporally indexes snapshots of working memory,

resulting in an autobiographical history of agent experience, while semantic memory

stores working-memory objects, independent of overall working-memory connectivity.

Agents retrieve knowledge from one of these memory systems by constructing a sym-

bolic cue in working memory; the intended memory system (explicitly indicated by

the agent) then interprets the cue, searches its store for the best matching memory,

and if it finds a match, reconstructs the associated knowledge in working memory.
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For episodic memory, the time to reconstruct knowledge depends, in part, on the size

of working memory at the time of encoding, another motivation for a concise agent

state (discussed further in Chapter VI).

Agent reasoning in Soar consists of a sequence of decisions, where the aim of each

decision is to select and apply an operator in service of the agent’s goal(s). The

primitive decision cycle consists of the following phases: encode perceptual input; fire

rules to elaborate agent state, as well as propose and evaluate operators; select an

operator; fire rules that apply the operator; and then process output directives and

retrievals from long-term memory. Unlike many other rule-based systems (e.g. ACT-

R), multiple rules may fire in parallel during a single phase. The time to execute the

decision cycle, which primarily depends on the speed with which the architecture can

match rules and retrieve knowledge from episodic and semantic memories, determines

agent reactivity. We have found that 50 milliseconds is an acceptable upper bound

on this response time across numerous domains, including robotics, video games, and

human-computer interaction (HCI) tasks; we will revisit this reactivity threshold in

later chapters as a metric for evaluating mechanism performance.

There are two types of persistence for working-memory elements added as the

result of rule firing. Rules that fire to apply a selected operator create operator-

supported structures. These WMEs will persist in working memory until deliberately

removed. In contrast, rules that do not test a selected operator create instantiation-

supported structures, which persist only as long as the rules that created them match.

This distinction is relevant to forgetting WMEs (discussed in Chapter VI).

As evident in Figure 3.1, Soar has additional memories and processing modules;

however, they are not pertinent to this dissertation and are not discussed further.
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3.3.2 Analysis

At an abstract level, Soar’s symbolic representation of present state and topo-

logical integration of long-term declarative and procedural knowledge is not unique:

this archetypal arrangement is similar to that of many other cognitive architectures,

especially those that are either designed to model human behavior, such as ACT-R

(Anderson et al., 2004), LIDA (Franklin and Patterson, 2006), and Clarion (Sun,

2006), or are inspired by human behavior, such as Icarus (Langley et al., 2004). Al-

though there are many commonalities in these systems, there are also significant

differences in design decisions of and theoretical commitments to knowledge repre-

sentation, memory-system functionality, and learning. For instance, while Soar’s

short-term memory representation, as detailed below, is manifested as an arbitrarily

complex symbolic graph, ACT-R maintains a fixed set of symbolic buffers and Clarion

integrates symbolic and connectionist representations. These structural departures

often reflect differences in research goals and phenomena of study.

To balance environmental reactivity (R1, R4) with rich access to large bodies

of knowledge (R5) while contending with arbitrarily complex problems (R6), Soar

adopts the problem space hypothesis (Newell and Simon, 1972) as a core theoretical

commitment. According to this conjecture, problem solving in a task is defined as

generalized search in a problem space. A problem space is composed of a set of states

and a set of operators, which transform one state to the next. At each state in the

problem space, knowledge is used to evaluate the operators that are available in the

current state and determine the next-best operator. As the agent contends with

multiple tasks and problems, it is possible that problem solving may extend over

multiple problem spaces.

The process of extracting directly available knowledge from a knowledge base and

making it available to the generative search process at the problem-space level is

called knowledge search (Newell , 1990; Strosnider and Paul , 1994). The distinction
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Figure 3.2: Search spaces in problem solving (Strosnider and Paul , 1994). States
are represented by oval rings, operators as edges connecting states, and
knowledge bases as the graphs stemming from each ring.

between problem search and knowledge search is depicted in Figure 3.2, where states

are represented as shaded oval rings, operators as edges connecting these rings, and

knowledge base(s) as the graphs stemming from each ring. Note that while the depth

of the knowledge base below each state is limited, illustrating a finite quantity of

immediate information, the plane upon which states are situated is potentially infinite

in scope, demonstrating the possibility of an expansive problem space, resulting from

the generative process of transforming states through operator application. Note

also that search through problem space is not guaranteed to exhibit cyclicity: search

progress is made as operators transform state and, given environmental dynamics and

the resulting changing availability of operators within problem space(s), there is no

guarantee of the ability to reach a prior state directly or indirectly via application of
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one or more operators.

There are many types of knowledge search that are computationally unbounded,

such as generalized logical inference and structural graph matching. Soar, however,

firmly commits to the concept of bounded rationality (Simon, 1991), which contends

that rationality of agent decision making is limited by information availability, mech-

anisms in the cognitive architecture, and finite time, relating to dynamic pressures

of the environment. Consequently, Soar distinguishes generative search in problem

space from bounded search of immediate knowledge in long-term memories. Thus

any unbounded computation over knowledge is not incorporated within architectural

retrieval mechanisms, but must be instead formulated as deliberate problem search,

where task-dependent control knowledge can be brought to bear to prune the search

space, while the agent maintains continual reactivity with its complex, dynamic en-

vironment. This deliberate search may involve multiple-knowledge accesses that are

spread out over multiple decisions, as directed by task-relevant control knowledge.

A related commitment of the Soar cognitive architecture is the strict division be-

tween task-independent architectural mechanisms and task-dependent agent knowl-

edge. This separation contains a strong analogy within the computer architecture

world, in which designers strive to optimize system utility, as measured by such fac-

tors as production cost, potential for broad utilization, energy consumption, and

application speed, by shifting the balance between those mechanisms fixed in highly

efficient and potentially parallel hardware and the range of functionality supported

by the less efficient, user-accessible software instruction set. When applied to knowl-

edge search, this optimization process appeals to the difficulties, well-studied in the

database and information retrieval communities, involved in maintaining a computa-

tionally efficient search over run-time domain knowledge (Strosnider and Paul , 1994).

The resulting intuition, well-studied in computational theory, is that the greater the

degree to which the complexity of a generalized search process can be constrained, the
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greater the potential for efficient implementation via highly optimized data structures

and algorithms. Soar applies this tenet by efficiently encoding in fixed mechanisms,

such as memory systems, task-independent domain knowledge. For example, envi-

ronmental regularities may exist at time scales that approach or exceed the life of the

agent and exploiting this knowledge within architectural mechanisms may improve

the quality and performance of knowledge retrieval processes (R6), while maintaining

universal computation at the level of problem search, where experience and task-

dependent agent knowledge may be brought to bear incrementally to prune complex

task solving (Laird and Wray , 2010).
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CHAPTER IV

Episodic Memory

This chapter documents our progress in understanding the computational chal-

lenges involved in extending generally intelligent agents with a task-independent

episodic memory. We begin with a motivational description of episodic-memory sys-

tems, including a small amount of psychological background (Section 4.1); then dis-

cuss related work (Section 4.2); continue to our functional specification of an episodic-

memory model (Section 4.3); describe data structures and algorithms that efficiently

implement the mechanism (Section 4.4); evaluate the mechanism, as implemented

within the Soar cognitive architecture (Section 4.5); and conclude with a summary

and discussion of future work (Section 4.6).

4.1 Motivation

Tulving was the first to describe episodic memory in depth, characterizing it as a

mechanism that captures historical knowledge contextualized in personal experience

(Tulving , 1972, 1983). He distinguished it from semantic memory: intuitively, se-

mantic knowledge (Chapter V) encodes what an individual “knows,” whereas episodic

knowledge represents an autobiographical stream of what an individual “remembers.”

Nuxoll (2007) characterized episodic memory as having the following distinguish-

ing functional characteristics that define it and may impact its implementation:
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E1. Architectural: episodic retrievals are available for all tasks (related to R6,

the task-independent requirement of memory systems for generally intelligent

agents).

E2. Automatic: episodic memories are stored without deliberation and the process

does not compete with knowledge-based reasoning. Reasoning can only indirectly

influence episodic storage, such as through deliberate rehearsal (related to R1,

the requirement for incremental, online learning).

E3. Autonoetic: retrieved episodic memories are distinguished from current sensing.

E4. Autobiographical: retrieved episodes are represented in the context in which

they were originally experienced.

E5. Temporally Indexed: retrieved episodes include meta-data providing temporal

context with respect to other episodes.

In context of the memory requirements for generally intelligent agents, incorporat-

ing episodic memory in a cognitive architecture contributes to the support of diverse,

comprehensive learning (R2), by incrementally (R1) providing an agent rich (R3)

access to a contextualized, temporally indexed, internal store of its prior experience.

However, scaling (R4) effective access (R5) to this knowledge in a task-independent

fashion (R6) over long agent lifetimes poses a significant challenge.

Prior research has shown that autonomous agents enhanced with episodic memory

are more capable in problem solving, both individually (e.g. Kuppuswamy et al., 2006;

Nuxoll and Laird , 2012) and in collaboration with other agents (e.g. Deutsch et al.,

2008; Macedo and Cardoso, 2004); are better able to account for human psychological

phenomena, such as those relating to memory blending (e.g. Brom et al., 2010) and

emotional appraisal (e.g. Gomes et al., 2011); and are more believable as virtual

characters (e.g. Gomes et al., 2011) and long-term companions (e.g. Lim et al., 2011).
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Nuxoll (2007) postulated some of the functional roles episodic memory may serve

in context of a general cognitive architecture, including virtual sensing (retrieving

past sensing of features outside current perception), action modeling (predicting the

outcome of actions), and retroactive learning (reviewing experiences and learning from

them when sufficient time and/or other resources become available), and with Laird

(2012), he demonstrated a subset of these capabilities. We return to these cognitive

capabilities in Section 4.5, where we evaluate our episodic-memory implementation.

4.2 Related Work

Relatively little work examines the computational challenges associated with main-

taining effective and efficient access to experience over long periods of time. Most

approaches to storing and retrieving episodic knowledge are task-specific (e.g. Macedo

and Cardoso, 2004) and/or apply to temporally limited problems, such as Ubibot

(Kuppuswamy et al., 2006), the ubiquitous robot, which was evaluated in a single 2D

simulation that lasted 7 minutes and had fewer than 50 episodic memories.

4.2.1 Episodic Memory in Soar

The work of Nuxoll (2007) was the first to explore episodic memory within Soar.

That work focused on issues of architectural integration and demonstrations of func-

tional benefits for agents in two evaluation domains. This dissertation builds upon and

extends this work along numerous dimensions, with a particular focus on computa-

tional efficiency and scaling. We present and evaluate algorithms and data structures

that perform efficiently for days of real-time use; we evaluate these techniques in a

much broader set of evaluation domains; we characterize performance in terms of

general properties of domains and cues; and we exemplify a broader range of cogni-

tive capabilities that agents can apply across domains by virtue of having an episodic

memory.
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4.2.2 EM: A Generic Memory Module for Events

EM (Tecuci and Porter , 2007a) is a generic store to support episodic-memory

functionality in a variety of systems, including planning, classification, and goal recog-

nition. EM is an external component with an API, wherein host systems must imple-

ment a thin interface layer. The term “episode” in EM defines a sequence of actions

with a common goal and is represented as a triple: context (“general setting” of the

episode), content (ordered set of the events that make up the episode), and outcome

(a domain/task-specific evaluation of the result of the episode). Though meaningful

in systems like planners, this representational constraint is inappropriate for gen-

erally intelligent agents (R3), as it may be difficult to pre-define action sequences

and outcome evaluation functions for long-living agents (C7) that must contend with

multiple, possibly novel, tasks (C4).

EM queries are composed of a partially defined episode and a single evaluation

dimension. EM utilizes a two-stage evaluation scheme, whereby a constant number

of candidate matches are identified (5 in published work) and then compared using

a relatively expensive semantic matcher. Tecuci and Porter (2007a; 2007b) applied

EM to planning, plan recognition, classification, and goal-schema recognition tasks

in several domains. They presented evidence that in practice, their retrieval mech-

anism inspects far fewer events than are stored. However, they have not published

retrieval-timing data, and thus it is unclear whether EM is applicable to real-time

agents. Furthermore, their results come from learning over short periods of time (250-

5000 episodes) in single-task domains, so it is unclear as to whether the underlying

algorithms and data structures will be effective and efficient for agents with many

orders of magnitude more episodes across a variety of problems.
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4.2.3 Case-Based Reasoning

Episodic-memory research is closely related to studies in case-based reasoning

(CBR). The goal of CBR is to optimize task performance given a case-base, where

each case consists of a problem and its solution (Kolodner , 1993). In CBR systems,

however, case structure is typically pre-specified, case-base size is either fixed or grows

at a limited rate, and the cases usually do not have any inherent temporal structure.

In contrast, an episodic store grows with experience, accumulating snapshots of an

agent’s experiences over time. An agent endowed with this memory can retrieve

relevant episodes to facilitate reasoning and learning based upon prior events.

Efficient algorithms have been studied in CBR for qualitative and quantitative

retrieval (e.g. Stottler et al., 1989; Wess et al., 1994; Lenz and Burkhard , 1996).

The underlying algorithms and data structures supporting these algorithms, however,

typically depend upon a relatively small and/or static number of case/cue dimensions,

and do not take advantage of the temporal structure inherent to episodic memories.

Considerable work has been expended to explore heuristic methods that exchange

reduced competency for increased retrieval efficiency (Smyth and Cunningham, 1996),

including refined indexing (e.g. Fox and Leake, 1995; Daengdej et al., 1996) and case-

base maintenance (e.g. Wilson and Martinez , 2000; Patterson et al., 2003; Cummins

and Bridge, 2009). Many researchers achieve gains through a two-stage cue matching

process that initially considers surface similarity, followed by structural evaluation

(e.g. Forbus et al., 1995).

The requirement of dealing with time-oriented problems has been acknowledged

as a significant challenge within the CBR community (e.g. Combi and Shahar , 1997),

motivating work on temporal CBR (T-CBR) systems (e.g. Patterson et al., 2004), and

research on the representation of and reasoning about time-dependent case attributes

(e.g. Jære et al., 2002), as well as preliminary approaches to temporal case sequences

(e.g. Ma and Knight , 2003; Sánchez-Marré et al., 2003). However, existing T-CBR
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work does not deal with accumulating an episodic store, nor does it take advantage

of temporal structure for efficient implementations.

4.3 Functional Specification

Our functional specification adopts and extends many of the high-level design

decisions described by Nuxoll (2007). We describe those generally, followed by a

mapping onto Soar, as depicted in Figure 4.1.

At a high level, our episodic-memory model comprises three phases: (1) encoding

agent state; (2) storing this information as episodic knowledge; and (3) supporting

retrieval at a later time. The episodic storage process automatically encodes a subset

of agent state (E1, E2) at regular intervals (E2) and temporally indexes this knowl-

edge within the episodic store (E5). This process does not modify or generalize stored

episodic knowledge, and thus episodic knowledge grows strictly monotonically, faith-

fully capturing the full extent of agent experience. To retrieve episodic memories,

the agent deliberately constructs an acyclic, graphical cue (E1), partially specifying

relevant contextual features within the episode. The cue matching process selects

a single match from the episodic store, defined as the most recent episode that has

the greatest number of structures in common with cue leaf nodes, and the retrieved

episode is fully reconstructed (E4) in a special buffer, such that the agent can reason

about this knowledge without confusing current sensing and past experience (E3).

4.3.1 Integration with Soar

In Soar, agent state is represented in its working memory as a connected digraph.

As depicted in Figure 4.1, this includes graph regions dedicated to reflecting envi-

ronmental input, action directives to the agent’s “body,” and other knowledge for

agent reasoning. During each decision cycle, Soar’s episodic memory automatically

encodes a subset of the contents of working memory. This information, as well as the
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Figure 4.1: Integration of episodic memory in Soar.

time of encoding, is stored in episodic memory, where it remains without modification

for the lifetime of the agent. Episodic memory does not encode the following por-

tions of working memory: subgoal reasoning and retrieval buffers from both episodic

and semantic memories. These automatic exclusions have analogous justifications.

First, for many agents these regions include many working-memory elements that

can change rapidly. For example, subgoal reasoning can build up large goal hierar-

chies that may retract when the agent perceives environmental features that invalidate

the consistency of the stack. Second, rather than using episodic memories of prior

retrievals/subgoal reasoning, the agent may be able to recreate these structures, or

current task knowledge may make these memories unnecessary. Finally, in the case

of subgoals, addressing dynamically sized stacks can be complex for agents and agent

designers. Episodic memory does not encode structures that are not represented in

working memory, such as procedural knowledge.

To retrieve an episode, agent task knowledge (represented as rules) constructs an

episodic cue: a directed, connected, acyclic graph that specifies task-relevant rela-

tions and features. The cue-matching process identifies the “best” matching episode,

defined as the most recent episode that has the greatest number of structures in com-

mon with cue leaf nodes. Episodic memory then reconstructs this episode within a

pre-specified region of working memory.
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4.3.2 Analysis

Soar’s representation of working memory as an arbitrary graph structure has sig-

nificant implications for the underlying implementation of episodic memory. A sim-

pler representation, such as a vector or propositional representation, would make it

possible to develop a simpler and faster implementation of episodic memory (R4), but

at significant cost in expressiveness (R3) and generality (R6). Given this general rep-

resentation, however, the underlying implementation of episodic memory (discussed

in the next section) is independent of other details of Soar and should generalize to

other architectures with graph-based representations of dynamic agent state.

The specification of cue matching commits to two algorithmic properties that

affect scaling (R4). The process returns an episode if one exists that contains at least

one feature in common with a cue leaf node. The mechanism also returns the “best”

episode with respect to cue structure, leaf nodes, and temporal recency. Given these

commitments, in the worst case, the encoding, storage, and retrieval operations scale

at least linearly with the number of state changes.

4.4 Efficient Implementation

The goal of our efficient implementation is to exploit regularities of state represen-

tation and dynamics in order to improve expected performance of episodic memory

via specialized data structures and algorithms. This section first describes and justi-

fies the regularities we employ, and then proceeds to a detailed algorithmic discussion

of for each of the three episodic operations: storage, cue matching, and reconstruc-

tion.1 The design of this implementation was motivated by the need to minimize

the growth in processing time for all episodic operations as the number of episodes

increases. However, over long agent lifetimes, cue matching has the greatest growth

1This algorithmic work was previously published in (Derbinsky and Laird , 2009; Derbinsky et al.,
2012b).
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Table 4.1: Evidence supporting temporal contiguity from several domains.

Domain
Avg. WM

Size
Avg. WM

Deltas
Avg. %

Deltas/Size
Mobile Robotics 1,234.51 01.71 0.14%

TankSoar 2,733.13 22.31 0.82%
Infinite Mario 1,993.29 72.31 3.63%

Eaters 0,229.83 18.19 7.91%
WSD 0,078.77 06.38 8.10%

potential and the overall design is meant to minimize the time required for that op-

eration without significantly impacting the memory or time required for the other

operations. Appendix B details the knowledge representation as a set of relational

schemas, while appendix C provides a concise description of the algorithms.

4.4.1 Regularities of State Representation and Dynamics

Our episodic-memory implementation makes two assumptions regarding regular-

ities of agent state, both of which have been applied in the rule-matching literature.

The first regularity is temporal contiguity : the world changes slowly, and thus changes

to agent state, from episode to episode, will be few relative to the overall size of state.

This idea is key to the space-time tradeoffs employed by the Rete algorithm for

rule-matching systems (Forgy , 1982): since there are few working-memory changes

at each time step, it is computationally beneficial to process each working-memory

change, as opposed to a search across all rule conditions and/or working-memory

elements. Table 4.1 summarizes evidence for this assumption in several experimental

domains, including video games, mobile robotics, and a word sense disambiguation

task (all discussed in more detail in Section 4.5). This data shows that, on average,

few working-memory elements change per episode (2-73 WMEs) and that this is a

relatively small proportion as compared to the agent’s overall representation of state.

The second assumption is structural regularity : agent knowledge will reuse rep-

resentational structure, and so over time, the number of distinct structures will be
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much smaller than the total number of experienced structures. Optimizations to

the Rete algorithm (e.g. Doorenbos , 1995) exploit this regularity through alpha/beta-

node sharing. In preliminary domain analysis, we found that the only major exclusion

to this assumption took the form of numerical representations with large, or infinite,

ranges, such as a monotonically increasing representation of time or continuous values

used to represent the position of the agent or objects.

4.4.2 Episode Storage

Given an agent whose present state is represented as a connected, directed graph,

we define episodic storage as the process of encoding and storing, at a given point in

time, all information necessary to recreate that state at a later time. By automati-

cally associating a unique temporal identifier with this captured data (E5), a storage

process supports an architectural (E1), automatic (E2), and autobiographical (E4)

episodic-memory system.

To satisfy this definition, a näıve storage mechanism simply records all nodes and

edges that comprise agent state during each episode. While sufficient, this approach

has unsatisfying computational resource requirements: encoding time and storage

space, per episode, is linear in the size of the state graph (Nuxoll , 2007).

Prior work by Nuxoll (2007) improved this approach by directly exploiting struc-

tural regularity and temporal contiguity. To exploit structural regularity, he devel-

oped a temporally global data structure, termed the Working-Memory Tree, that

indexed all distinct structures that had ever been encountered during episodic encod-

ing. This approach served to compress the representation of repeated structures, as

well as support more efficient indexing for later cue matching. However, as the name

implies, Nuxoll’s data structure only supported a tree representation of episodes. We

extended this work to support a fully relational representation, which we termed the

Working-Memory Graph (WMG).
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Figure 4.2: Episodic memory dynamic-graph index: the working-memory graph en-
codes all distinct graph structures and the temporal intervals capture the
episodes when these structures were added to/removed from agent state.

To exploit temporal contiguity, Nuxoll represented episodes implicitly via tempo-

ral intervals over “pointers” to working-memory tree structures. The result was that

encoding time and storage memory requirements scaled in the number of working-

memory changes, as opposed to the size of each episode. As illustrated in Figure

4.2, we extended this approach to support the WMG. The combination of these two

data structures is a novel dynamic-graph index that efficiently encodes all information

necessary to reproduce all states of working memory at the granularity of an episode.

We formalized this representation as a set of relational schemas, which are detailed

in Appendix B. We employed one optimization in the representation for which we

had preliminary evidence of computational time and space savings. The optimization

was the separation of interval representation into three types: the “now” intervals

represent those structures that are currently in working memory; the “point” inter-

vals represent those structures that were in working memory for only a single episode;

and the “range” intervals are all other temporal ranges. The reason for distinguish-

ing “now” from “range” is one of computational efficiency: all temporal ranges are
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indexed, and thus there is a savings in not adding to/removing from indexes if not

necessary. Therefore, new intervals are represented in the “now” relation; when the

associated WME is removed from working memory, the starting point is removed

from the “now” relation and added to either “point” or “range,” as appropriate. The

reason for distinguishing “point” from “range” has a small space-savings cost, but also

prevents unnecessary indexing and interval-based querying and associated processing.

We populate these data structures with new intervals by executing the following

algorithm for every element added to working memory:

1. if a corresponding edge does not exist in the WMG, add it

2. point the WME to the corresponding WMG edge

3. start a new interval at the pointed WMG edge

When a WME is removed from working memory, we record the end of the corre-

sponding WMG-edge interval (opposite of step 3). Thus, our implementation only

stores element changes.

4.4.2.1 Analysis

The description of our storage mechanism predicts that memory requirements

will scale linearly with changes to agent state (R): Storage = (X0)(R). To fit

parameters to this model, we ran 49 agents across 12 distinct domains (discussed

in greater detail in Section 4.5), including video games, mobile robotics, planning,

and word sense disambiguation. We collected average working-memory changes and

storage requirements and performed a linear regression, as summarized in Figure 4.3.

Our analysis found this model to be highly predictive (R2 = 0.98). Consequently,

the memory requirements for this algorithm will grow more quickly for those agents

embedded within more dynamic environments. We also see that even with the cost

of indexing, this algorithm requires only about 1-5 KB of storage per episode on
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Figure 4.3: Regression of the Storage operation across several domains.

average; however, as the storage cost is variable with the changes in each episode,

more turbulent episodes will consume greater amounts of memory.

4.4.3 Cue Matching

Given an episodic store, as illustrated in Figure 4.2, and a cue, represented as

an acyclic graph, we define cue matching as identifying the most temporally recent

episode that shares the greatest number of symbolic features structurally in common

with cue leaf nodes. This operation functionally supports task-independent (E1)

access to episodic knowledge.

To satisfy this definition, a näıve cue-matching mechanism performs a graph-

match comparison between the cue and each episode in the store, beginning with the

most recent and concluding once a perfect match is found or once all episodes are con-

sidered and ranked. While sufficient, this approach has unsatisfying computational-

resource requirements: potentially exponential time, with respect to average episode

size, for each graph-match execution, and a linear growth, with respect to the number

of episodes in the store. With the following three strategies, we have built on prior

work to improve the tractability of both of the aforementioned issues.
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The first optimization is to only consider candidate episodes for evaluation, that

is those episodes that contain at least one feature in common with the cue. It is

computationally efficient to incrementally examine this list of candidates by cross-

referencing the cue with the working-memory graph and merging pertinent lists of

temporal ranges.

The second optimization is to implement Interval Search (Nuxoll , 2007). The key

insight of this algorithm is that a candidate match score only changes at the endpoints

of episode-element intervals. For example, consider the feature expanded in Figure

4.2. Were this node a cue feature, we could potentially avoid evaluating episodes

868 through 5308 (a savings of over 4000 evaluations!), as they are known, without

exception, to all contain this feature. By just performing episode evaluation at inter-

val endpoints (i.e. episodes where there is the potential for a change of evaluation

score), we can achieve significant computational savings. We efficiently implement

this algorithm by maintaining B+-tree indexes of all temporal-interval endpoints (one

tree for interval start, another for interval end), keyed on WMG pointers. Walking a

pointer’s endpoints in descending order of time entails finding the most recent end-

point (log time with respect to the number of endpoints), and walking the leaf nodes

in order (constant time per endpoint, since B+-tree leaf nodes form a doubly linked

list). To process a multi-node cue, we maintain parallel B+-tree pointers for each cue

node and all pointers within a B+-tree are stored in a priority queues (keyed on end-

point value). As pointers are popped from these priority queues, we perform episode

evaluation, increment the B+-tree pointer, and then re-insert into the priority queue.

The final optimization is to minimize the frequency of potentially combinatorial

graph-match evaluations by implementing a two-stage matching policy. The key

observation here is that a candidate episode only has the potential to match a cue if it

contains all surface cue features independently, where a surface feature is defined as a

distinct, directed path from root to leaf. Given the WMG, surface-feature matching
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is equivalent to satisfaction of a set of monotonic, disjunctive-normal-form (DNF)

boolean clauses, where each literal is an edge in the cue and each clause is a path

from root to leaf. To efficiently track satisfaction of these clauses, we developed

and implemented a novel discrimination network, termed the DNF Graph, which

efficiently and incrementally maintains satisfaction of a set of DNF formulas during

each endpoint of Interval Search. At each endpoint in the Interval-Search algorithm,

exactly one literal is activated or de-activated (depending on whether we encounter an

end/start). If the associated cue edge is non-terminal, this change may entail recursive

propagation to child literals. If, during propagation, we alter clause satisfaction, we

modify the global match score. Thus, we extend endpoint iteration to track only

changes in boolean satisfaction of the DNF Graph and, by extension, modifications

of candidate match score.

If a perfect surface match is found, we perform a full graph-match compari-

son. This comparison utilizes standard heuristics to guide search, such as most-

constrained-variable (MCV). If the cue and candidate episode unify structurally, the

cue-matching process is complete. If not, we maintain a reference to the most recent

match with the greatest surface-match score, which will be returned when Interval

Search exhausts all candidate episodes.

The result of these optimizations is a cue-matching algorithm that is guaranteed

to satisfy our functional specification, but which attempts to minimize temporal lin-

ear scanning and combinatorial graph-match evaluation by processing only changes

between candidate episodes.

4.4.3.1 Analysis

To analyze how characteristics of environments, tasks, and agent cues affect the

operation of our algorithms and data structures in practice, we developed predictive
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performance models:

CueMatching = DNFGraph+ IntervalSearch+GraphMatch

DNFGraph = (X1)(log2[U ·R])(L)

IntervalSearch = (X2)(
1

T
)(Distance)(∆)

To fit parameters to these models, we performed 100 isolated executions of prim-

itive operations (DNFGraph and IntervalSearch) on data collected from 10 trials

of the mapping-bot agent in the TankSoar domain (discussed in greater detail in Sec-

tion 4.5) at 10 time points (100K, 200K, ... 1M). We collected the necessary episode

statistics (described below) and performed linear regressions for 15 different queries

The constants in the equations (X1, X2) reflect linear scaling factors for a given

computer. The CueMatching operation comprises DNFGraph and IntervalSearch

operations. The DNFGraph operation is linearly dependent upon the logarithmic

growth of the average number, U , of historically unique internal and leaf nodes mul-

tiplied by R, the total number of stored intervals, as well as linearly dependent upon

L, the number of literals associated with the cue nodes. The slower-growing compo-

nent (comprising U and R) predicts that time for this operation will scale with the

number of distinct structures and the number of changes. The more dominant cost

(L) refers to the structural selectivity of the cue, or the number of ways in which

the cue could match a candidate episode. Our analysis in TankSoar (see Figure 4.4)

found this model to be highly predictive of DNFGraph performance (R2 = 0.996),

suggesting that this algorithm will perform poorly if supplied with a cue that has

features that can match candidate episodes in many ways. This algorithmic property

is analogous to the problem of matching multi-valued attributes in rule-based systems

(Tambe et al., 1990).

The IntervalSearch operation is expressed as a proportion of relevant cue node
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Figure 4.4: Regression of the DNFGraph component of the CueMatching
operation in the TankSoar domain.

intervals. T represents the total number of episodes recorded. Distance represents

the temporal difference between the current episode and the best match. ∆ represents

the total number of intervals relevant to the cue. Intuitively, the farther back in time

the algorithm must search for an episode, the more intervals it must examine. Given

the nature of this algorithm, search distance will be affected by two properties of

cue features: temporal selectivity (the number of episode endpoints indexed by a cue

feature) and co-occurrence frequency (the likelihood of multiple features to co-occur

within a single episode). Our analysis in TankSoar (see Figure 4.5) found this model

to be highly predictive of IntervalSearch performance (R2 = 0.989), suggesting that

this algorithm will perform poorly if supplied with a cue that has multiple features

that occur in many episodes (i.e. low temporal selectivity) and/or have low probability

of cue features co-existing within candidate episodes (i.e. low feature co-occurrence).

The GraphMatch operation is much more difficult to characterize. CSP back-

tracking depends upon cue breadth, depth, structure (such as shared internal cue

nodes), and corresponding candidate episodes, but can be combinatorial in the worst

case (though our two-phase matching policy attempts to minimize this cost). We

have not extensively studied this component.
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Figure 4.5: Regression of the Interval-Search component of the CueMatching
operation in the TankSoar domain.

4.4.4 Reconstruction

Given an episodic store and a valid temporal id of an episode, we define recon-

struction as the process of faithfully reproducing all working-memory elements that

originally comprised that episode. This process is tantamount to an interval inter-

section query: collect all working-memory graph structures that started before and

ended after a particular point in time.

To efficiently support this operation, we implemented a Relational-Interval Tree

(Kriegel et al., 2000), which is a mapping of the interval-tree data structure onto

Relational-Database-Management-System (RDBMS) B+-tree indexes and SQL queries.

As with the standard interval tree, intersection queries execute in time logarithmic

with the number of stored intervals. Because intervals represent working-memory

element changes, this growth characteristic is sub-linear with respect to the number

of episodic memories and so episodic reconstruction should remain efficient even as

agents persist for long periods of time.
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4.4.4.1 Analysis

We developed the following predictive model for episode-reconstruction perfor-

mance:

Reconstruction = RITree+ Collect

RITree = (X3)(log2R)

Collect = (X4)(M)(1 + log2U)

As with the CueMatching operation, we fit our models within the TankSoar do-

main with the mapping-bot agent. We performed 100 isolated executions of primitive

operations (RITree and Collect) on the same data collected for CueMatching (10

trials, 10 time points from 100K to 1M episodes). We collected the necessary statistics

(described below) for 50 episodes selected randomly (5 per 10,000 episodes through

the first 100,000 episodes of execution) and performed linear regressions to fit data

points.

Total time for Reconstruction is the sum of two operations: RITree and Collect.

RITree refers to the process of extracting pertinent intervals from the interval tree

and the logarithmic dependent variable, R, refers to the total number of ranges in the

Relational-Interval Tree. Our analysis in TankSoar found this model to be moderately

predictive of RITree performance (R2 = 0.7), suggesting that performance will scale

well with agent-state changes.

The Collect operation refers to cross-referencing pertinent episode intervals with

structural information in the Working-Memory Graph. This process depends upon

the average number, U , of historically unique internal and leaf nodes, as well as the

number of elements, M , comprising the episode to be reconstructed. Because episode

size did not vary greatly for our evaluation agent, the dominant linear factor, M ,
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highlighted noise in the experimental data and thus R2 was only 0.73. This suggests

our algorithm will perform poorly if the size of working memory is large (a problem

we investigate in Chapter VI).

4.5 Evaluation

We instantiated the efficient implementation as the episodic memory of Soar

v9.3.2, using version 3 of the SQLite in-process relational database engine (Hipp,

2012) to implement our relational schemas. Our goal in this section is to understand

the degree to which Soar’s episodic memory supports useful operation across a variety

of domains while scaling to long agent lifetimes.2

4.5.1 Metrics

In order to evaluate episodic-memory scaling, we measure two classes of computational-

resource usage during agent runs: execution time and storage requirements.

The time it takes for Soar to complete a decision cycle dictates the rate at which

it can respond to environmental change, and is thus a direct measure of agent reac-

tivity. We instrumented Soar to directly measure time required for encoding/storing

episodes, as well as performing cue matching (i.e. the time for retrieval, without re-

constructing episodes in Soar’s working memory). We report maximum time: whereas

average time can mask momentary computation “surges,” the maximum captures the

agent’s ability to respond under algorithmically stressful circumstances. We compare

this metric to a reactivity threshold of 50 milliseconds, a response time that is suf-

ficient for real-time control in games, robotics, and HCI tasks. We note that in

practice, maximum time can be two or more orders of magnitude greater than aver-

age; however, in this evaluation, it was typically within one, and can thus also inform

expectations of average performance.

2This evaluation was previously published in (Derbinsky et al., 2012a).
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Since memory becomes an important factor for long runs of agents, we measure

the amount of memory used by episodic memory. We also relate this measure to the

average size of and changes to working memory.

To reliably measure cue-matching timing data, we instrumented Soar to perform

this operation 100 times for each cue at regular intervals across the lifetime of the

agent. Storage timing data, however, only captures a single operation, and is thus

noisier and we can only extract qualitative trends. All experiments were performed

on a Xeon L5520 2.26GHz CPU with 48GB RAM running 64-bit Ubuntu v10.10.

4.5.2 Agent Capabilities

For each evaluation domain, we developed a specialized set of cues that im-

plemented a set of cognitive capabilities, or high-level functionalities supported by

episodic memory (Nuxoll and Laird , 2012). The following are the full set of capabili-

ties that we include in this evaluation:

• Virtual Sensing. An agent retrieves past episodes that include sensory in-

formation beyond its current perceptual range that are relevant to the current

task.

• Detecting Repetition. An agent retrieves past episodes that are identical (or

close to identical), possibly indicating a lack of progress towards goal(s).

• Action Modeling. An agent retrieves an episode of performing an action,

as well as one or more episodes that temporally followed. The agent reasons

about task-relevant feature changes to develop a model of the consequences of

its actions.

• Environmental Modeling. An agent retrieves an episode, as well as one or

more episodes that temporally followed. The agent reasons about task-relevant
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feature changes to develop a model of the dynamics of the world, independent

of its own actions.

• Explaining Behavior. An agent retrieves an episode, as well as one or more

episodes that temporally followed. The agent reasons about its prior actions,

with respect to task-relevant features of state, in order to develop an explanation

of its behavior.

• Managing Long-Term Goals. An agent retrieves goals that were initiated

in the past but are not currently active, to determine if they should be active

in the current context.

• Predicting Success/Failure. An agent retrieves an episode in which it took

an action, as well as one or more episodes that temporally followed. The agent

reasons about task-relevant feature changes, as well as how they relate to present

task goals, in order to estimate the likelihood of success/failure if it takes the

action in its present situation.

4.5.3 Word Sense Disambiguation

An important problem for any agent that uses natural language is word sense

disambiguation (WSD) – the task of determining the meaning of words in context. In

this domain, we extend prior work that explored the degree to which memory-retrieval

bias was beneficial in this task (Chapter V; Derbinsky and Laird , 2011). In this

formulation of WSD, the agent perceives a <lexical word, part-of-speech >pair, such

as <“say”, verb >, and, after attempting to disambiguate the word, the agent receives

feedback, which includes all word meanings that were appropriate in that context.

To measure the benefit of long-term memory in this task, the agent perceives the

corpus, in order, numerous times, and is evaluated on disambiguation-learning speed

and accuracy.
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For this task, we implemented an agent that represents the last n lexical-word

inputs as an n-gram. The agent then uses a sequence of episodic cognitive capabilities

to disambiguate the meaning: first, it cues episodic memory to detect a repeated

situation (e.g. “when did I last perceive the 3-gram {Friday, say, group}?”); it then

retrieves the next episode, forming an environmental model of feedback (e.g. “what

happened when I replied ’express a supposition’?”); and then disambiguates using

this prior information, predicting future success based upon prior experience.

We evaluated the agent using SemCor (Miller et al., 1993), the largest and most

widely used sense-tagged corpus (185,269 words). During its first exposure to the

corpus, the agent can disambiguate 14.57% of words using a 2-gram representation

of context, and 2.32% using 3-grams. During its next corpus exposure, these per-

formance levels improve to 92.82% and 99.47%, respectively. These learning results

demonstrate the benefit of flexible access to a high-fidelity store of experience.

This domain is quite small, on average requiring 234 bytes of memory to store

the working-memory changes that occur during each episode. However, as with all

natural-language texts, there are some words that appear more often than others in

SemCor, and so this task exemplifies the effects of temporal selectivity and cue-feature

co-occurrence on episodic-memory performance.

To evaluate scaling performance, we selected two 3-word phrases from the corpus

and used a set of cues that represented all 1-, 2-, and 3-gram contexts for these phrases

(11 cues total, as one word was shared; see Table 4.2). We ran the agent five times

across SemCor, producing 4.6M episodes. We measured the performance of episodic

storage and retrievals every 50K episodes.

All episodic operations met our reactivity criteria (i.e. < 50 milliseconds). Maxi-

mum storage time was essentially constant, with a maximum of 0.5 milliseconds. The

maximum query time, across all 11 cues, was 22.05 milliseconds. We regressed a model

that predicts cue-matching time in milliseconds, as a linear factor of the number of
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Table 4.2: WSD: occurrence and cue endpoints for SemCor.
n-Gram Occurrence Endpoints Proportion
{group} 1,333 1,333 ∼ 0%
{say} 1,005 1,005 ∼ 0%
{Friday} 0,018 0,018 ∼ 0%
{well} 0,150 0,150 ∼ 0%
{be} 8,400 8,400 ∼ 0%

{say, group} 0,006 2,338 0.21%
{Friday, say} 0,001 1,023 0.55%

{Friday, say, group} 0,001 2,356 1.27%
{be, say} 0,069 9,405 0.07%
{well, be} 0,027 8,550 0.17%
{well, be, say} 0,001 9,555 5.16%

interval endpoints walked (R2 > 0.999): 0.0024x + 0.0647. This model predicts that

retrieval time, in this task, is dependent almost exclusively on interval walking. Thus,

we can estimate scaling limits by computing the number of endpoints walked when

the function value equals 50 milliseconds (x = b[50− 0.0647]/0.0024c = 20, 806 end-

points). From this analysis, we conclude that if we assume one word per episode, this

episodic-memory implementation can reactively perform cue matching that examines

(20, 806/185, 269) = 11.23% of SemCor.

We now examine how this scaling capacity compares to the space of possible cues,

and the evaluation cues we used in this task. In SemCor, only two lexical words

occur more frequently than in 1% of inputs: “be” (4.53%) and “person” (3.61%).

Since these frequencies are far below the threshold of 11.23%, we conclude that this

episodic-memory mechanism can reactively respond to any individual feature as a cue.

However, as cue size increases, the number of potential endpoints to walk increases

additively with each word, while co-occurrence frequency, the number of times the

n-gram occurs within the corpus, can only stay constant or decrease. For instance,

consider the following two phrases used for our cue evaluation: {Friday, say, group}

and {well, be, say}. The endpoint and co-occurrence frequency data of all 1-, 2,

and 3-grams of these phrases is presented in Table 4.2, where the final column is
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Figure 4.6: WSD: retrieval-time data versus encoded episodes,
controlling for feature co-occurrence.

(endpoints/occurrence) divided by the size of SemCor, which estimates the propor-

tion of SemCor likely to be examined for each cue (assuming uniform distribution

of occurrence). For 1-grams, this mechanism achieves constant-time cue matching,

independent of these data, since it concludes cue matching after the first match.

For those n-grams with a co-occurrence of 1, cue-matching time exhibits saw-tooth

patterns, where peaks are once-per-corpus exposure, since the number of endpoints

to examine increases until the n-gram is re-encountered. This data is presented in

Figure 4.6, which plots retrieval time versus encoded episodes, with the 1-gram {say}

is plotted as a baseline. This chart clearly indicates the correlation between search

distance and retrieval time (see predictive model of Interval Search in Section 4.4.3.1).

For non-zero co-occurrence, we see more frequent, non-uniform heights/slopes

and in the data, as the n-grams are encountered through the corpus, which relates

to temporal selectivity. Figure 4.7 plots retrieval time versus encoded episodes of the

n-grams that include the word “say” and have non-zero co-occurrence, with {say}

provided again as a baseline. This evaluation shows that our episodic-memory mech-

anism can perform this task reactively for 1-grams, 2-grams, and 3-grams, as SemCor

proportion for all cues of these lengths is below 11.23%. However, of the more than

184,000 distinct 4-grams in this corpus, there are 368 that require examining more

than 11.23% of SemCor, and thus a 4-gram is the scaling limit.

58



0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

0	   500	   1000	   1500	   2000	   2500	   3000	   3500	   4000	   4500	  

Re
tr
ie
va
l	  T
im

e	  
(m

se
c)
	  

Episodes	  (x1000)	  

{be,	  say}	  (69)	  

{say,	  group}	  (6)	  

{friday,	  say}	  (1)	  

{say}	  

Figure 4.7: WSD: retrieval-time data versus encoded episodes,
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4.5.4 Generalized Planning

In WSD, temporal selectivity and co-occurrence of cue features was the primary

factor affecting performance, whereas cue size and structure had little effect. To

evaluate cue complexity, we extended prior work that used episodic memory as a

source of action-modeling knowledge for planning (Xu and Laird , 2010).

In this evaluation, we used 12 planning domains, common in competitions (Lo-

gistics, Blocksworld, Eight-puzzle, Grid, Gripper, Hanoi, Maze, Mine-Eater, Miconic,

Mystery, Rockets, and Taxi) and made 44 problem instances by varying domain pa-

rameters (e.g. number of blocks in Blocksworld). These domains were originally

expressed in the Planning Domain Definition Language (PDDL) and were automat-

ically converted into Soar rules that encode the states in which the agent can select

actions (operator proposal), as well as the consequences of those actions (operator

application). During execution, the agent’s working memory captures a set of objects

and relations and, at each episode, the agent randomly selects an action, exploring

the state space over time.

Our first experiment explored whether episodic memory could detect repeated

states. For each problem instance, we extracted a random problem state as our evalu-

ation cue. We then ran the agent for 50K episodes, and measured performance every

59



1K episodes as it explored the state space. This experiment evaluates the episodic

memory while stressing the dimension of cue structural selectivity: in these domains,

the cue is relatively large and the agent state is structurally homogenous, and thus

cues match multiple structures in most other episodes.

The episodic memory reactively stored episodes in all problem instances (max-

imum < 12.04 milliseconds). Memory consumption in each domain was strongly

correlated with the number of working-memory changes (R2 = 0.86): storage ranged

from 562 bytes per episode to 5454, averaging 1741. Using the full 48GB of RAM on

our evaluation computer, we could thus store between 9 and 91 million episodes, with

more than 29 million on average. In summary, storage was not a scaling concern in

this set of domains.

Of the 44 problem instances, there were 12 in which cue matching remained re-

active for the full 50K episodes, all of which were instances of the Miconic, Maze,

Hanoi, and Gripper domains (see Figure 4.8). These problem instances did not ex-

hibit growth in their cue-matching time, while the remaining problem instances grew

rapidly and became unreactive in fewer than 10k episodes. When we explored the data

for explanatory factors, we found that retrieval time within each domain strongly cor-

related with the number of episodes searched and working-memory size (R2 = 0.85).

The 12 problem instances that did scale had the smallest average working-memory

sizes, as well as relatively small state search spaces (yielding small, bounded interval

searches). For example, in Figure 4.8, the “hanoi 4” domain had one of the largest

working memories (234 on average) and had, by far, the largest state space: on av-

erage, retrievals searched 784 episodes, and 3,505 at maximum, versus “maze6x6,”

the next largest, which required 228 on average and 1,215 maximum. The remaining

instances were either too structurally unselective, too temporally unselective (due

to a large state space), or both. These results characterize an upper bound in cue

complexity for reactive retrievals.
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Figure 4.8: Planning: retrieval-time data versus encoded episodes for the
detecting-repeated-states experiment (reactive domains).

Our second experiment explored whether episodic memory could be used to detect

analogous states. We used the same setup as in the previous experiment, but removed

all grounded features in the evaluation cues. However, this had the effect of making

the cues less structurally selective (i.e. each cue feature could match more structures

when compared to an episode). As a result, the episodic memory could not scale on

any problem instance, primarily due to frequent and expensive structural matching.

These findings suggest that the episodic-memory mechanism is not appropriate for

direct analogical mapping.

Our final experiment explored whether episodic memory could be used to de-

tect analogous states if the agent had knowledge of important schemas at the time

of encoding. This experiment relates to prior work showing that experts are able

to encode memories that can be relationally retrieved (Gentner et al., 2009). We

encoded the cues from our second experiment, those without grounded features, as

rules that would place a flag in working memory whenever the pattern appeared, a

feature episodic memory would automatically encode and could be queried for di-
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rectly. The episodic-memory mechanism could scale to 50K episodes in all problem

instances given this task formulation (maximum < 0.08 milliseconds), suggesting

agents can perform limited analogical reasoning over large stores of prior experience,

while remaining reactive, by joining task-dependent recognition knowledge with a

task-independent episodic memory.

4.5.5 Video Games and Mobile Robotics

The previous evaluations focused on specific aspects of episodic-retrieval cues:

WSD stressed temporal selectivity and feature co-occurrence, while the planning do-

mains stressed structural selectivity. We found that the episodic-memory mechanism

has scaling limits that depend on domain structure and dynamics, knowledge repre-

sentation, and cues. Here we examine the degree to which these limitations apply

to domains in which agent actions impact its future perceptions of the world. We

describe the domains, and then present combined results.

4.5.5.1 TankSoar

TankSoar (see Figure 4.9) is a video game that has been used in evaluating nu-

merous aspects of Soar, including episodic memory (Nuxoll and Laird , 2012). In

TankSoar, the agent controls a tank and moves in a discrete 15x15 maze. The agent

has numerous sensors, including path blockage and radar feedback, and it can perform

actions that include turning, moving, and controlling its radar. The agent we use,

mapping-bot, explores the world and populates an internal map, stored in working

memory.

This task is interesting for episodic-memory evaluation due to a large working

memory with relatively few changes. However, most perceptual structures change

frequently and many are highly selective, both temporally and structurally.

We used 15 cues in TankSoar (see Appendix D for the full set), which implemented
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Figure 4.9: TankSoar: domain screenshot. The agent (the tank marked with a red
dot) is using its radar to sense a “battery,” which is a source of energy (a
limited resource).

virtual-sensing, detecting-repetition, and action-modeling capabilities. For example:

1. “When did I last sense a missile pack on my radar?”

2. “When was I last at this (x, y) position on my map?”

3. “What happened last time I rotated left and turned on my radar while I was

blocked in the forward direction?”

Cues that referred to a map cell (e.g. #2) were structurally unselective, as they could

refer to any of the 225 entries. The temporal selectivity of cues relating to perceptual

structures was typically reduced as the cue size increased, due to non-overlap in

feature co-occurrence (e.g. in #1 there were episodes when the agent used the radar,
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Figure 4.10: Eaters: domain screenshot. The agent (the red Pac-Man) is now in a
position to move in one of four cardinal directions, where it will con-
sume either “normal” food (north and east), “bonus” food (west), or
no food (south). Black squares represent walls, which the agent cannot
penetrate.

but did not sense a missile pack). We ran mapping-bot for 3.5M episodes, which

is >48-hours of simulated real-time (SRT: 50 milliseconds/episode), and measured

performance every 50K.

4.5.5.2 Eaters

Eaters (see Figure 4.10) has also been used in previous episodic-memory evalu-

ations. Eaters is a video game, similar to PAC-MAN, where the agent controls an

“eater,” which moves through a 15x15 grid-world, eating different types of food. The

agent senses a 2-cell radius, and can move in any of the four cardinal directions. The

agent we use, advanced-move, prioritizes movement based on food types.

This task is interesting as a contrast to TankSoar. The agent’s working-memory

size is drastically smaller, but changes are comparable. We used 7 cues that exem-

plified virtual sensing, detecting repetition, action modeling, and explaining behavior

(see Appendix D for the full set). For instance: “What happened the last time there
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Figure 4.11: Infinite Mario: domain screenshot. The agent (Mario) has avoid the
enemy “goomba“ (left of Mario) and is pursuing coins (right of Mario)
that will supply it reward.

was normal food to the east of me and bonus food to the west of me?” Examining

the episode following this retrieval supports the agent explaining its own preferences

regarding the relative desirability of these food types, informing predictions of its own

future decisions. The agent state is sufficiently simple such that no evaluation cue

was unselective, either structurally or temporally. We ran advanced-move for 3.5M

episodes (>48 hours, SRT) and measured every 50K.

4.5.5.3 Infinite Mario

Infinite Mario (see Figure 4.11) is a video game used in the 2009 Reinforcement-

Learning (RL) Competition and is based on Super Mario. The allocentric visual scene

comprises a two-dimensional matrix (16x22) of tiles and the agent can take actions

that include moving, jumping, and increasing speed. We use an agent that applies an

object-oriented representation and hierarchical RL to quickly improve performance

in the task (Mohan and Laird , 2011) and collect data on game level 0.
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Several aspects of this game are interesting for evaluation. The working memory

is large and contains a variety of representational patterns, including flat features

that are both symbolic (e.g. Mario is “small,” “big,” or “fiery”) and real-valued

(e.g. distance to enemies); hyper-edges (e.g. rows in the visual scene); and relational

structures (e.g. relating hierarchical state representations to perception). Also, due

to side-scrolling, a relatively large percentage of the visual scene changes between

episodes, stressing temporal contiguity.

We evaluated 14 virtual-sensing and action-modeling cues (see Appendix D for

the full set). For example, the following cue combines perceptual features with those

derived from task knowledge: “What did I do when last I encountered a winged,

downward-flying ‘Goomba’ that was a threat?” Cues that virtually sensed visual-

scene cells were structurally unselective. We ran the agent for 3.5M episodes (>48

hours, SRT) and measured performance every 50K.

4.5.5.4 Mobile Robotics

For this evaluation, we used an existing mobile-robotics platform that has been

applied to simulation and physical hardware (Laird et al., 2011b). The agent perceives

both physical perception data, including real-valued abstractions of laser range-finder

data, as well as symbolic representations of objects, rooms, and doorways. The task

is to explore a building with 100 offices (see Figure 4.12), and then execute a fixed-

patrol pattern. While performing these tasks, the agent builds an internal map, which

it uses for path planning and navigation.

We evaluated 6 cues for virtual sensing and goal management (see Appendix D for

the full set). Consider the following cue: “When was my desired destination doorway

#5?” The agent could examine episodes that followed to recall progress made towards

that goal. However, as the agent accumulated more distinct goals, this cue became

less temporally selective.
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Figure 4.12: Mobile Robotics: domain map. The robotic agent is located in the Soar
lab (3844 BBB) and is using LIDAR (red dots) to sense the room. The
Soar agent receives maximal distance data at five points (blue dots) in
its 180° sensory range.

We ran the agent in simulation for 12 hours of real time, which totaled 108.6

million episodes. Unlike the video games, which run in lock-step with discretized

time, this agent runs asynchronously with a dynamic simulated environment, as would

a real robot. The agent spends most of its time moving and very little changes in

its perception of the world from episode to episode. We expect that this type of

environment is representative of real-world agents, whereas the video games are, to

a greater extent, anomalous. We measured performance every 300K episodes, which

amounts to about once every 2 minutes.
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Table 4.3: Summary of empirical results for episodic memory in video-games and
mobile-robotics domains.

Storage Cue Matching

(Max. Time in msec.)

Max. Time Avg. High Low

(msec.) Bytes/Episode Selectivity Selectivity

TankSoar 18.66 1,035 4.77 18.31
Eaters 01.39 0,813 0.71 –

Infinite Mario 55.01 2,646 1.66 40.43
Mobile Robotics 03.17 0,113 0.75 27.50

4.5.5.5 Results

The left half of Table 4.3 presents storage results, grouped by domain. The

episodic-memory mechanism stored episodes in less than 50 milliseconds for all do-

mains except Infinite Mario, where infrequent spikes in perceptual changes, caused by

Mario dying and restarting the level, defied the temporal-contiguity assumption. The

storage cost across domains correlated with working-memory changes (R2 > 0.93).

The right half of Table 4.3 presents cue-matching results, grouped by domain and

cue selectivity (temporal or structural). The episodic-memory mechanism maintained

reactivity across all domains. With one exception, retrieval time did not meaningfully

increase with time. The growth rate for goal management in mobile robotics (see

Figure 4.13) depended upon the properties of the robot’s mission: when behavior

shifted from exploration to patrol (∼10 million episodes), new goal locations were

encoded less frequently, and thus temporal selectivity decreased at a smaller rate.

If the agent had to explore a much larger building, and thus the original growth

rate had continued, the cue-matching time would have grown beyond 50 milliseconds

after 34 million episodes (fewer than 4 hours of real time). In the Beyster building,

however, the agent can maintain reactivity for longer than it can store episodes in

main memory: the cue-matching time will grow beyond 50 milliseconds after nearly

634 million episodes (longer than 3 days of continuous real-time operation), whereas
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Figure 4.13: Mobile Robotics: timing data for goal-management cue.

memory growth will exceed 48GB of memory after about 437 million episodes (just

over 2 days).

4.6 Discussion

In this chapter, we presented and evaluated techniques to enhance intelligent

agents with episodic memory. Our memory model represents episodes as connected

digraphs, a sufficiently general representation (R3) for effective use in a variety of

tasks. It also incorporates task-independent (R6) processes to incrementally encode

and store new agent experiences (R1), as well as support flexible retrievals (R5) that,

in practice, scale to long agent lifetimes (R4). We implemented this mechanism in the

Soar cognitive architecture and evaluated it in a variety of problem domains, including

word sense disambiguation, generalized planning, video games, and mobile robotics.

We showed that while the algorithms are not immune to properties of domains and

cues that negatively affect performance (e.g. low temporal selectivity, low structural

selectivity, and low feature co-occurrence), the mechanism does support many cues

that agents can apply to support useful cognitive capabilities (R2).
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4.6.1 Future Work

In order for an episodic-memory mechanism to fulfill the requirements imposed

by generally intelligent agents (Chapter II), computational-resource utilization must

be bounded. The current implementation has sources of unbounded memory and

computation growth, scaling primarily with agent-state changes over long lifetimes.

To bound memory usage, it will be necessary to investigate methods to effectively

forget episodic knowledge, possibly maintaining higher-level abstractions over episodic

“events.” To bound computation time, some benefits may come from time-slicing or

parallel algorithms, but ultimately it is likely that our memory model will require a

relaxed specification of retrievals (i.e. heuristic search). However, as with all memory

research, it will be important to balance scaling (R4) with agent task performance

(R5), and thus much more work must be done to develop and evaluate agents that

use episodic memory in a variety of problem domains. This will entail research into

general methods for integrating episodic retrievals with agent reasoning in known

tasks, as well as how strategies for agents to learn to utilize episodic knowledge in

novel situations.

Another direction of research will be to investigate how an episodic-memory mech-

anism integrates with other components and processes in a general cognitive archi-

tecture. We have done some initial work to investigate how the Working-Memory

Graph can serve as a frugal source of heuristic knowledge for recognition judgements

(Li et al., 2012). Another fruitful avenue will be to explore how historical informa-

tion in episodic memory can inform consolidation, or automatic encoding, of semantic

knowledge. Finally, our retrieval mechanism currently biases only towards recency

of information, a crude proxy for the relevance/usefulness of information. It will be

interesting to investigate the degree to which meta-data from other cognitive mech-

anisms and processes (e.g. emotional appraisals; Marinier et al., 2009) can improve

the robustness of this search across a variety of problem domains.
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CHAPTER V

Semantic Memory

This chapter documents our progress in understanding the computational chal-

lenges involved in extending generally intelligent agents with a task-independent se-

mantic memory. We begin with a motivational description of semantic-memory sys-

tems, including a small amount of psychological background (Section 5.1); then dis-

cuss related work (Section 5.2); continue to our functional specification of a semantic-

memory model (Section 5.3); describe data structures and algorithms that efficiently

implement the mechanism (Section 5.4); evaluate the mechanism, as implemented

within the Soar cognitive architecture (Section 5.5); and conclude with a summary

and discussion of future work (Section 5.6).

5.1 Motivation

Tulving characterized semantic memory as a mechanism that captures declara-

tive facts about the world, independent of the context in which they were originally

learned (Tulving , 1972, 1983). Intuitively, semantic knowledge encodes what an agent

“knows,” whereas episodic knowledge (Chapter IV) represents an autobiographical

stream of experience that the agent “remembers.”

In context of the memory requirements for generally intelligent agents, incorporat-

ing semantic memory in a cognitive architecture contributes to the support of diverse,
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comprehensive learning (R2), by incrementally (R1) providing an agent (R3) rich ac-

cess to general knowledge that is re-usable over time, independent of how situations

differ temporally, spatially, or with respect to other contextual distinctions relative to

the agent’s state and goals. However, as with episodic memory, scaling (R4) effective

access (R5) to this knowledge in a task-independent fashion (R6) over long agent

lifetimes poses a significant challenge.

Agents that are enhanced with a scalable semantic memory can access large stores

of information in a variety of situations. For instance, agents that communicate

using natural language require flexible access to a lexicon, such as WordNet (Miller ,

1995). Additionally, agents that work on a variety of problems in diverse domains

benefit from conceptual and ontological information about the world, provided by

such knowledge bases as the SUMO upper ontology (Niles and Pease, 2001) and Cyc

(Lenat , 1995). If the agent has sufficient processes and task knowledge to make use

of these large information stores, there is evidence that semantic memory may serve

to improve the agent’s ability to scale reasoning to complex problems wherein state

and feature spaces are very large, such as via generalization (e.g. Sanner et al., 2000),

heuristic inference (e.g. Anderson and Schooler , 1991; Schooler and Hertwig , 2005),

and partitioning knowledge into local/short-term and distal/long-term (e.g. Newell ,

1990). We return to these cognitive capabilities in Section 5.5, where we evaluate our

semantic-memory implementation.

5.2 Related Work

Unlike episodic memory, incorporation of semantic-memory mechanisms and knowl-

edge bases has been an area of active research in the cognitive-architecture commu-

nity (Langley et al., 2009). For example, Icarus (Langley et al., 2004; Langley and

Choi , 2006) has a hierarchical organization of long-term concepts that is accessible

to deductive reasoning; Companions (Forbus and Hinrichs , 2006; Forbus et al., 2009)
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informs analogical reasoning with a large knowledge base of ontological and domain

knowledge, initialized with the contents of ResearchCyc (Lenat , 1995); and the LIDA

framework (Franklin and Patterson, 2006) posits a declarative memory, populated

from consolidated episodic knowledge, which can supplement the current situated

awareness. The ACT architecture (Anderson, 1983) was the first to have a long-term

declarative memory and ACT-R (Anderson et al., 2004) implements properties, de-

rived from the rational analysis of memory (Anderson and Schooler , 1991), of how

to retrieve useful items from long-term memory. The ACT-R model has been exten-

sively used to model a rich set of psychological phenomena, such as the Fan effect

(Anderson and Reder , 1999), category learning (Anderson, 1991), and list memory

(Anderson et al., 1998).

There has been very little work, however, that explores how to support effective

semantic-memory retrievals for real-time agents as knowledge bases grow large. As an

illustrative example, the Air Force Research Laboratory applied ACT-R to develop

a Synthetic Teammate capable of functioning as the Air Vehicle Operator (AVO), or

pilot, in a 3-person team task simulation of an Uninhabited Aerial Vehicle (UAV)

performing reconnaissance missions (Ball et al., 2010). A crucial component of the

system was language comprehension and so the system integrated a large subset of

the WordNet lexicon (Miller , 1995) into the model’s long-term declarative memory.

By itself, the language comprehension component pushed the scale of the long-term

memory beyond the capacity of the ACT-R data storage and access mechanisms, and

thus the model either ran many times slower than real time, or had compromised

stability, depending upon the proportion of WordNet that was made available to

the model (Douglass et al., 2009). To extend the capabilities of the ACT-R declar-

ative memory, Douglass et al. developed a semantic-memory mechanism using the

PostgreSQL relational database management system. While their semantic-memory

module did support 40-milliseconds retrievals for a set of cues, the authors did not
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characterize the computational profile of their retrieval mechanism, did not evaluate

their approach beyond a single domain, and did not support any retrieval biases in

the case of ambiguous cues (e.g. base-level activation).

5.3 Functional Specification

Abstractly, we define a semantic-memory store as a set of elements.1 A semantic

element is composed of a bias value and a set of symbolic augmentations. For example,

consider the following example semantic store, in which upper-case English letters

identify elements, lower-case Greek letters represent augmentations, and the numbers

in square brackets represent bias values:

A [1.41]: { α, β, ε, φ }

B [1.73]: { α, ε }

C [3.14]: { γ }

D [2.72]: { γ, φ }

We define a symbolic retrieval cue as a set of symbols corresponding to the set of

augmentations of a particular semantic store, such as { α, ε }. The set specifies the

augmentations that an element must contain.

Given a semantic store and a cue, we define the result of a semantic retrieval

to be a single element from the store, including all augmentations, that satisfies the

constraints of the cue and has the maximal bias value. Thus, given the example cue {

α, ε }, the result is B: while both A and B satisfy the cue, the bias value of B (1.73)

is greater than that of A (1.41).

1This specification was previously published in (Derbinsky et al., 2010).
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5.3.1 Integration with Soar

In Soar, working memory is composed of a set of symbolic triples, or WMEs. The

set of WMEs that share the same first symbol, or “identifier,” are termed an “object,”

and the set of individual WMEs sharing that identifier are termed “augmentations”

of that object. Thus, an identifier in working memory is a natural mapping to a

semantic-memory element, where object augmentations map to semantic-memory

augmentations.

To add an element to semantic memory, agent task knowledge (represented as

rules) constructs a storage command: a reference to an identifier in working mem-

ory. Semantic memory copies the working-memory augmentations and associates

them with a semantic-memory element. Furthermore, the working-memory identifier

now refers directly to the semantic-memory element, such that future storage of the

working-memory object overwrites the contents of semantic-memory augmentations.

Note that while Soar’s working memory forms a single connected graph, semantic

memory is composed of multiple, possibly disconnected graphs.

To retrieve an element, agent task knowledge (represented as rules) constructs

a semantic cue: an object in working memory. Semantic memory then interprets

the augmentations of the object as the cue and attempts to find a result. If found,

semantic memory reconstructs the semantic-memory element in working memory at

a pre-specified region. Given a working-memory identifier that refers to a semantic-

memory element, agent task knowledge can also request that the current semantic-

memory augmentations overwrite working-memory augmentations (which may not

be equivalent if changes have occurred to a working-memory object since the most

recent storage).
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5.3.2 Comparison to ACT-R

The ACT-R declarative memory is widely used within the cognitive-architecture

and cognitive-modeling research communities. Thus, here we compare our abstract

semantic-memory formulation to the ACT-R declarative module.

In ACT-R, declarative knowledge is encoded as a set of chunks, each of which is

a collection of labeled slots that have values. Each chunk is given a type via an ISA

designation, which dictates the set of slots it has. To retrieve declarative knowledge,

a production rule issues a request to the declarative module by populating the declar-

ative buffer with a set of constraints, including a test and a slot-value pair. One type

of test is a positive test (“+”), which is interpreted as meaning the slot-value pair

must exist in retrieved knowledge. Another is a negative test (“-”), which means the

slot-value pair must not exist in retrieved knowledge. The DM module also supports

non-symbolic comparison tests (e.g. ≥, <, etc). Given this request, the ACT-R DM

module searches the store for matching chunks. If any are found, the module, indi-

cates a successful retrieval, selects a result from amongst the candidates chunks, and

reconstructs it in the appropriate buffer. The module also supports the use of non-

symbolic activation to bias selection amongst candidate chunks, functionality that

is used in many cognitive models. The most commonly utilized activation models

are base-level, which incorporates the history of past retrievals, and spreading, which

incorporates retrieval context.

We now map the ACT-R DM to our abstract formulation. First, without loss of

generality, we interpret the chunk type as a slot-value pair (slot label “ISA” and value

equivalent to the type). Next, since we are considering qualitative matching (equality

is defined as equivalent symbols), each distinct slot-value pair can be equivalently

represented as a single, composite symbol (by concatenating the slot label and value

with a unique separating character, such as “ISA:typeName”). Since slot-value pair

order is arbitrary, a chunk instance can be equivalently represented as a set of [com-
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posite] symbols. In ACT-R, all chunks of a given type must contain values for the

same set of slots and a chunk type can only have one slot of a given label; without

loss of generality, we eliminate both of these constraints. Given the analysis above, a

chunk maps to a semantic-memory element, and slot-value pairs to augmentations.

We apply a similar analysis to DM retrieval requests, with distinct slot-value

pairs compressed to a single composite symbol. If we require that equivalent slot-

value pairs in chunks and retrieval requests resolve to the same composite symbols,

then the set of positive tests form the cue. In Appendix E, we discuss issues involving,

and preliminary work on, negative tests; however, we have not implemented support

for negative cues in Soar and do not discuss them further. Our model only supports

qualitative matching, and thus does not support non-symbolic cue tests. However,

outside of these differences, the symbolic ACT-R DM retrieval interface is an instance

of our problem formulation and thus results from our work, though implemented in

Soar, extend to ACT-R models, and any other system that can be similarly mapped.

5.4 Efficient Implementation

In this section, we discuss indexing structures and processes to efficiently sup-

port semantic-memory functionality, even as the number of elements grows to be

very large.2 We first make and justify an assumption regarding the contents of se-

mantic memory: most elements have a small number of augmentations. Given this

assumptions, the storage and reconstruction operations of semantic memory are com-

putationally trivial, and thus will not be discussed further. Instead, the remainder of

this section will address the problem of supporting effective and efficient retrievals.

However, prior to getting lost in the weeds, we will first consider what is meant by

efficient support with respect to our problem formulation. Appendix F details the

knowledge representation as a set of relational schemas, while appendix G provides a

2This implementation was previously published in (Derbinsky et al., 2010).
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concise description of the algorithms.

5.4.1 Assumption: Small Element Cardinality

Core to our semantic-memory implementation is the assumption that for most

elements, augmentation cardinality is small. To validate that this assumption is

reasonable for real data sets, we studied three large, commonly used knowledge bases

(KBs): SUMO (Niles and Pease, 2001); OpenCyc, a subset of Cyc (Lenat , 1995); and

WordNet (Miller , 1995). For each KB, we extracted the number of features of each

named entity (see Appendix H for feature CDFs). Each distribution was unimodal,

with more than 90% of elements having fewer than 50 elements, and exhibited strong

right skew, suggesting that while the there was a common range of feature size for

most elements, there existed rare cases with exceptionally large cardinalities.

5.4.2 Contextual Meaning of Efficient Support

As a baseline, consider a näıve retrieval mechanism that iterates through the

semantic store, comparing each element to the cue, and returning the first valid

result, if one exists. To understand the costs, we define E as the set of elements in

the store, and a as the average number of augmentations per element, and C as the

cue. Sets surrounded with vertical bars, such a |E|, refer to the cardinality, or number

of items contained in the set.

Assuming no specialized indexing, the memory cost of the baseline mechanism

grows with the product of the number of elements and the average augmentation

cardinality (a · |E|). In the worst case, the baseline mechanism must traverse all of

this memory for each cue element, and thus the time cost multiplies by the size of

the cue (a · |E| · |C|). In context of large semantic-memory stores, it is likely that |E|

will dominate a and |C|, and thus memory and retrieval costs will scale linearly with

the number of elements in the semantic memory.
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Memory, though not unlimited, is generally considered cheap and plentiful, while

time is expensive and limited, and thus our goal is to minimize retrieval time, possibly

at the cost of memory. Thus we pose efficient support for semantic retrievals as sub-

linear in the number of elements in the semantic memory, |E|, while remaining linear

in memory.

5.4.3 Cue Matching

The cue for semantic-memory retrievals is a non-empty set of augmentations that

a resulting element must contain. To assist in our analysis, we define Rc as the

elements that contain an augmentation c and, accumulated over all c in C, R to be

the bag of candidate elements (which may contain duplicates, if an element contains

more than one augmentation, c, in C ).

Before presenting our mechanism, we note that the retrieval problem is a con-

strained form of a subset query on set-values, which has been widely studied in

database and information retrieval (IR) communities (Terrovitis et al., 2006). In its

general form, the worst-case time cost is known to be linear in the sum of the number

of candidate elements for each cue augmentation, |R|, though clever indexing methods

have shown massive average-case improvements in real-world data.

Our approach includes two components: indexing and query evaluation.

5.4.3.1 Indexing

We supplement the semantic memory with an inverted table of semantic-memory

elements (Zobel and Moffat , 2006), where augmentations are the “terms” and elements

are the “documents.” As is common, we associate with each distinct augmentation

the cardinality of its associated element list. We also impose an ordering on each

element list, sorted in descending order based upon the element bias values; this

sorting facilitates iteration of retrieval candidates during query evaluation.

79



To support efficient updates to this data structure, we introduce a threshold pa-

rameter, τ , which represents a “small” value of augmentation cardinality. If the

augmentation cardinality of an element is less than τ , the bias value of the element is

represented explicitly within the element list of each distinct augmentation. Other-

wise, we associate with the element a special “infinite” bias value (∞), which forces it

to the front of the sorted element list. As we describe shortly, this bias-representation

dichotomy balances computation at the time of index updates (for small augmenta-

tion cardinality) and cue evaluation (large augmentation cardinality). For example,

given the following semantic memory:

A [1.41]: { α, β, ε, φ }

B [1.73]: { α, ε }

C [3.14]: { γ }

D [2.72]: { γ, φ }

Our supplementary index would contain the following information, for a value of

τ = 3, where the number in parentheses is the element-list cardinality:

α (2): [ A=∞, B=1.73 ]

β (1): [ A=∞ ]

γ (2): [ C=3.14, D=2.72 ]

ε (2): [ A=∞, B=1.73 ]

φ (2): [ A=∞, D=2.72 ]

We formalized this representation as a set of relational schemas, which are detailed

in Appendix F. We now analyze the update operations with respect to a semantic-

memory element, e, and the supplementary index:

80



• Add an Augmentation: |e| 6= (τ − 1)

If the cardinality change does not violate τ , then add to element list.

1. Hash to the appropriate element list: O(log[distinct augmentations])

2. Insert in sorted element list: O(log[|list|])

3. Update element-list cardinality: O(1)

• Add an Augmentation: |e| = (τ − 1)

If the cardinality change violates τ , add to element list and convert existing

augmentations to ∞.

1. Hash to the appropriate element list: O(log[distinct augmentations])

2. Prepend to sorted element list: O(1)

3. Update element-list cardinality: O(1)

4. For each augmentation, a ∈ e: O(|e|)

a) Remove from sorted element list (old bias value): O(log[|list|])

b) Prepend to sorted element list: O(1)

• Remove an Augmentation: |e| 6= τ

If the cardinality change does not violate τ , then remove from element list.

1. Hash to the appropriate element list: O(log[distinct augmentations])

2. Remove from sorted element list: O(log[|list|])

3. Update element-list cardinality: O(1)
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• Remove an Augmentation: |e| = τ

If the cardinality change violates τ , then remove from element list and convert

existing augmentations to true bias value.

1. Hash to the appropriate element list: O(log[distinct augmentations])

2. Remove from sorted element list: O(log[|list|])

3. Update element-list cardinality: O(1)

4. For each augmentation, a ∈ e: O(|e|)

a) Remove from sorted element list (∞): O(log[|list|])

b) Add to sorted element list (true bias value): O(log[|list|])

• Change Bias Value of Element: |e| < τ

If the cardinality is less than τ , update the bias value of each augmentation and

re-sort each element list.

1. For each augmentation, a ∈ e: O(|e|)

a) Hash to appropriate element list: O(log[distinct augmentations])

b) Remove from sorted element list (old bias value): O(log[|list|])

c) Insert in sorted element list (new bias value): O(log[|list|])

• Change Bias Value of Element: |e| ≥ τ

If the cardinality is greater than or equal to τ , all augmentations already reflect

the ∞ bias value and thus do not require updates.

1. No action necessary

An important outcome is that the only linear component in these operations is

that which iterates over the augmentations of an element (e.g. when changing bias

value of an element). Since this iteration is bounded in the element cardinality,

and we only perform this iteration when element cardinality is a small value, all
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index-update operations are efficient independently. Furthermore, if our assumption

regarding small element cardinality holds, the number of augmentation changes at

any point in time should be small. However, we require further constraint on the

process that updates bias-value changes in order to guarantee efficiency.

For this approach, we assume that the bias-value update process must be locally

efficient. We define a locally efficient bias-update process as one that satisfies two

properties: (1) the update can affect the bias value of at most a constant number of

elements and (2) updating bias takes time strictly sub-linear in the number of elements

(i.e. o(|E|)). Since index updates are efficient independently, and locally efficient

bias-value processes are bounded, index updates are efficient for this algorithm.

Two examples of locally efficient bias-value update processes are implementations

of (1) recency and (2) frequency retrieval biases. To bias retrievals towards recency,

the activation value of an activated element is updated to one greater than the globally

largest activation value, which requires a global counter in order to avoid a linear scan

of elements. To bias retrievals towards frequency, the activation value of an activated

element is updated to one greater than its prior value. It is clear that for both of

these processes, the update is efficient (comprising a lookup and summation) and

local (affecting only the bias value of a single element). In Section 5.5.4 we describe

and evaluate a locally efficient approximation to base-level activation (Anderson and

Schooler , 1991), which summarizes the activation history of an element, incorporating

both recency and frequency information.

5.4.3.2 Query Evaluation

Given the supplementary index described above, our retrieval algorithm exploits

two optimizations: (1) statistical query optimization (Chaudhuri , 1998) and (2) bias

pre-sorting. First, we develop a query plan that orders search based upon the statistics

of augmentation frequency that are stored in the supplementary index, with the intent
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of succeeding/failing as early as possible. Second, we order our search of candidates

such that the first successful result we find is guaranteed to have the highest bias

value, and thus search can terminate (i.e. we need only examine full candidate lists

in failure conditions).

We first generate a sorted list, Q, of all augmentations, c ∈ C, keyed ascending

on Rc (the elements that contain an augmentation c), which requires | C | queries

on the inverted index). Q represents a specialized query plan, sorted in ascending

order of element-list size. Given the example cue { α, ε }, and the example semantic

memory above, the example query plan is either [ α, ε ] or [ ε, α ] (since Rα=2 and

Rε=2), and we use the former for the remainder of this analysis.

Next, we pop the first augmentation from Q (α) and retrieve a pointer, w, to

the head of the sorted element list in the supplementary index (initially referring

to element A). Note that since this list is updated incrementally with changes to

semantic memory, we do not have to compute this list in response to the query.

However, we may find that a set of elements have bias value of ∞; if so, we perform

a lookup for its true bias value and execute insertion sort into a second list, L’,

iterate w, and repeat until w refers to an element with a non-infinite bias value. Now

both w and [possibly empty] L’ refer to sorted lists: by incrementally merging them,

we iterate over the most constrained list of candidate elements. In our example, w

initially refers to A, which does have a bias value of∞. Thus, we arrive at w pointing

to B=1.73 and L’ containing list [ A=1.41 ]. By merging the heads of these lists, we

therefore examine element B first (because 1.73 >1.41).

Iterating over the remaining augmentations in Q ([ ε]), we verify, using the original

semantic memory (not the supplementary index), whether element B satisfies all

remaining constraints. If so, return the element and success. If the candidate fails

any of the remaining constraints, we merge the next candidate from w and L’ and

retry verification. If no candidate successfully verifies (i.e. we exhaust w and L’),
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return failure. In our example, B verifies, and thus we conclude without considering

element A.

If our assumption regarding small element cardinality holds, and we have chosen

an appropriate value of τ , then L’ will be small, and thus on-demand sorting via bias

values will be minimized. In the worst case, this retrieval algorithm grows linearly

with | E |. However, min(Rc∈C) may be much smaller, and thus candidate search will

be bound by cue-feature selectivity : the degree to which the most constraining cue

feature limits the scope of search. The degree to which the algorithm must examine

this resulting candidate list is controlled by cue-feature co-occurrence: the likelihood

of cue features to augment the same element.

5.5 Evaluation

We instantiated the efficient implementation as the semantic memory of Soar

v9.3.2, using version 3 of the SQLite in-process relational database engine (Hipp,

2012) to implement our relational schemas. Our goal in this section is to understand

the degree to which Soar’s semantic memory supports useful operation across a variety

of domains while scaling to large stores of knowledge over long agent lifetimes.3

5.5.1 Lexical Queries

To compare to the work done by Douglass et al. (2009), our first evaluation issued

lexical queries in the WordNet (Miller , 1995) lexicon. As with Douglass et al., we

used the WN-LEXICAL WordNet 3 data conversion (Emond , 2006). The data set

has over 820K chunks, which includes over 212K word/sense combinations. Once

imported, Soar’s semantic store, including all indexing structures, is about 400MB.

All experimental results below were run on a 2.8GHz Core 2 Extreme processor with

4GB of RAM using the recency bias.

3This evaluation has been published as (Derbinsky et al., 2010; Derbinsky and Laird , 2011, 2012a).
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Our first experiment was to verify (a) that retrieval time was independent of

augmentation selectivity and (b) that the retrieval bias was processed efficiently in

under-specified cues. We performed semantic retrievals on 100 randomly chosen,

single-augmentation cues, averaged over 10 trials. Retrieval time was 0.1887 millisec-

onds each (0.0216 standard deviation).

Our next experiment focused on larger cues. We randomly chose 10 nouns and

formed a cue from their full sense description (| cue |= 7). Retrieval time averaged

0.2973 milliseconds over 10 trials each (0.0108 standard deviation).

Douglass et al. used a derived subset of the WN-LEXICAL dataset, so direct

replication of their work was not possible. They reported retrievals of about 40

milliseconds with cues of 1-4 augmentations on a declarative memory with about

232.5k chunks. Our results show 100x faster retrievals on a comparable set of cues

scaling to a 3x larger memory store. Additionally, these results provide evidence

that real-time agents can utilize this semantic-memory mechanism with WordNet,

as the retrieval times were more than two orders of magnitude smaller than the 50-

milliseconds reactivity requirement.
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Figure 5.1: Example output of synthetic generator (k = 3).
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5.5.2 Synthetic Data

In order to evaluate how our semantic-memory retrieval mechanism scales to large

stores of knowledge, we developed a scalable, synthetic dataset generator. The gener-

ator takes as input a single parameter, k, and Figure 5.1 shows the output for k = 3,

where nodes map to semantic elements, and edges are augmentations. As exemplified,

the output is a semantic store with k! elements and (k + 1)! total augmentations. In

addition to scaling the number of semantic elements, the generator produces element

augmentations such as to allow precise control over cue-feature selectivity. As illus-

trated in Figure 5.1, each element has a unique augmentation (label “1”), each has an

augmentation that is shared with all elements (label “0”), and for the remaining aug-

mentation labels, label ∈ (2 − k), precisely (1/label) elements share that label-value

pair. For example, in Figure 5.1, the (“label”=selectivity) set is as follows: (“0”=1.0,

“1”=1/6, “2”=1/2, “3”=1/3).

For this evaluation, we utilized this generator to create data sets that had sizes

comparable to commonly used KBs: (k = 7, 8) ∼ SUMO (4.5K classes, 250K facts);

(k = 8, 9) ∼ WordNet (212K word senses, 820K facts); and (k = 9, 10) ∼ Cyc (500K

concepts, 5M facts). Table 5.1 lists statistics of the data sets we generated, with

the associated k value. While the number of data sets is small, the last column

illustrates that memory consumption is linear (R2 > 0.99), costing about 50-80 bytes

per element/augmentation. By comparison, a textual description costs about 20

bytes per element/augmentation, suggesting about a 3-4x overhead for indexing. All

Table 5.1: Statistics of synthetic data sets used for semantic-memory evaluation.
Parameter Elements Augmentations Store Size Cost

k k! (k + 1)! (MB) bytes
k!+(k+1)!

7 0,005,040 00,040,320 0,003.00 69.35
8 0,040,320 00,362,880 0,027.81 72.32
9 0,362,880 03,628,800 0,291.95 76.69
10 3,628,800 39,916,800 2,048.00 49.31
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Figure 5.2: Synthetic: augmentation-selectivity sweep.

experimental results below were run on a 2.8GHz Core 2 Extreme processor with 4GB

of RAM using the recency bias.

Our first experimented evaluated whether the retrieval mechanism provides bounded

retrievals for under-specified cues, independent of the number of candidate elements.

For each distinct augmentation in each of the data sets, we constructed a cue (| C |=

1) and measured retrieval time. Figure 5.2 plots retrieval time versus augmentation

selectivity for each data set: we see nearly constant-time retrievals within each data

set, independent of augmentation selectivity, measuring just under 0.4 milliseconds

for the largest (k = 10).

Our second experiment evaluated whether combinations of augmentations result in

complex cues that adversely affect retrieval time. We constructed all possible lengths

of cues using all combinations of augmentation selectivity and measured retrieval time.

Figure 5.3 plots retrieval time versus cue size and linearly regresses this relationship

for each data set. We found that the only factor affecting retrieval time within a data

set was the number of augmentations in the cue (R2 > 0.99), achieving a maximum

88



y	  =	  0.0117x	  +	  0.3738	  
R²	  =	  0.9985	  

y	  =	  0.0112x	  +	  0.2289	  
R²	  =	  0.99895	  

y	  =	  0.0105x	  +	  0.1883	  
R²	  =	  0.99804	  

y	  =	  0.01x	  +	  0.1657	  
R²	  =	  0.99865	  

0	  

0.05	  

0.1	  

0.15	  

0.2	  

0.25	  

0.3	  

0.35	  

0.4	  

0.45	  

0.5	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	  

Re
tr
ei
va
l	  T
im

e	  
(m

se
c)
	  

Number	  of	  Cue	  AugmentaIons	  

k=10	  

k=9	  

k=8	  

k=7	  

Figure 5.3: Synthetic: cue-size sweep with linear regressions.

of about 0.5 milliseconds for the largest data set (k = 10). Across data sets, we found

that the intercept (i.e. overhead required to execute a retrieval) grows linearly with

the number of elements and augmentations (R2 = 0.96) and the slope (i.e. growth

rate with respect to number of cue augmentations) grows logarithmically (R2 > 0.99).

For both experiments, our mechanism performed two orders of magnitude faster

than our reactivity requirement (50 milliseconds). These results illustrate that our

mechanism can scale to very large data sets, and are not affected by cue-feature

selectivity, assuming cue-feature co-occurrence is not low: in these experiments, there

always existed a perfect match to the cue, but in the case of the second experiment,

large cues opened up a space of candidates that was well-pruned by our query planner.

5.5.3 Mobile Robotics

In order to evaluate the degree to which our semantic-memory mechanism was

efficient and effective for real-time agents, we developed a Soar agent to control a

simulated mobile robot (Laird et al., 2011b). Our evaluation used a simulation in-

stead of a real robot because of the practical difficulties in running numerous, long
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Figure 5.4: Mobile Robotics: domain map, with robotic agent located
in the Soar lab (3844 BBB).

experiments in large physical spaces. However, the simulation was quite accurate and

the Soar rules (and architecture) used in the simulation were exactly the same as the

rules used to control the real robot.

The robot’s task was to visit every room on the third floor of the Bob & Betty

Beyster building at the University of Michigan (see the full map in Figure 5.4). For

this task, the robot visits over 100 rooms and takes about 1 hour of real time. Dur-

ing exploration, it incrementally builds an internal topological map, which, when

completed, requires over 10,000 working-memory elements to represent and store. In

addition to storing information, the model reasons about and plans using the map
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in order to find efficient paths for moving to distant rooms it has sensed but not

visited. The agent uses episodic memory (Chapter IV) to recall objects and other

task-relevant features during exploration.

Our focus in this domain was the use of semantic memory to improve agent re-

activity, an issue that arises as the agent monotonically builds its domain map. As

discussed in Chapter IV, Soar’s episodic memory reconstructs prior episodes in their

entirety, and thus the process scales linearly with the size of working memory at the

time when the episode was encoded. In this experiment, we augmented the agent

with task knowledge (represented in rules) to partition its representation of the map

into short-term knowledge (stored in working memory), which is useful for immediate

reasoning, and long-term knowledge (stored in semantic memory), which is necessary

for planning over information not accessible to the robot’s sensors. The outcome was

that the agent could still complete its task, but both working-memory size and max-

imum decision time (comprising primarily episodic retrievals) were greatly reduced,

and thus the agent benefited from improved reactivity.

It is interesting to note that the use of semantic memory to represent domain

knowledge subtly changed some aspects of agent behavior. One example was when

the agent was selecting from amongst known rooms to explore. When the rooms

are all in working memory, a rule can match all rooms and apply arbitrary reason-

ing to choose from amongst them (e.g. distance from present position, expected

utility, etc.). However, when using semantic memory, the agent can only constrain

the room retrieval with respect to pre-encoded features, and the recency bias selects

from amongst all candidates. These differences, however, did not lead to significant

differences in time to complete the task.

All experimental results below were gathered on an Intel i7 2.8GHz CPU with

8GB of RAM using the recency bias. Because each experimental run took 1 hour,

we did not duplicate our experiments sufficiently to establish statistical significance
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Figure 5.5: Mobile Robotics: working-memory size versus elapsed time.

and the results we present are from individual experimental runs. However, we found

qualitative consistency across our runs, such that the variance between runs is small

as compared to the trends we focus on below.

Figure 5.5 plots working-memory size over time, comparing a baseline agent, which

stores its map in working memory, and the agent partitioning its knowledge using se-

mantic memory. Over time we see a monotonic growth for the baseline agent, whereas

the semantic-memory agent stays relatively constant, only growing temporarily when

it retrieves structures for planning. We see that after one hour, the semantic-memory

agent has 11,000 fewer working-memory elements, more than a 90% reduction as

compared to the baseline.

Figure 5.6 plots maximum decision-cycle time in milliseconds over time, compar-

ing these two agents. The dominant time reflected by this data is time to reconstruct

prior episodes that are retrieved from episodic memory. As a result, after less than one

hour, the decision-cycle time for the baseline agent grows above the 50-milliseconds

threshold, while the semantic-memory agent appears constant (∼ 10 − 20 millisec-

onds). This agent was also used in a much longer evaluation (see Section 4.5.5.4),

which maintained reactivity for 12 continuous hours of operation using both semantic
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Figure 5.6: Mobile Robotics: max decision-cycle time versus elapsed time.

and episodic memory.

In summary, this experiment shows that an effective and efficient semantic memory

can improve an agent’s ability to reason in large domains over long periods of time

while staying reactive to environmental dynamics. In this experiment, we provided

the agent task knowledge of how to perform this partitioning. In Chapter VI, we will

revisit this task and demonstrate an efficient and task-independent selective-retention

mechanism that can effectively prune working memory, resulting in comparable size

and improved decision-cycle time.

5.5.4 Word Sense Disambiguation

One of the goals of this dissertation was to develop a suite of memory-retrieval

heuristics and evaluate their effectiveness and efficiency in a variety of tasks to deter-

mine which heuristics are best suited to be used for memory retrieval in a cognitive

architecture. As a first step towards this goal, we focused on one specific challenge fac-

ing long-term memory: given a large store of knowledge, and an ambiguous cue that

matches multiple stored memories, how does the system efficiently determine which

memory to retrieve? The rational analysis of memory (Anderson and Schooler , 1991),
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positing that human memory optimally solves this problem with respect to the his-

tory of past memory access, yielded the base-level activation model, which is widely

used in the cognitive-modeling community. However, existing computational imple-

mentations of this model do not scale to tasks that require access to large bodies of

knowledge (Douglass et al., 2009). In this evaluation, we explored an initial set of

memory retrieval heuristics that incorporate recency and frequency of memory access:

we evaluated their effectiveness and scaling in the word sense disambiguation (WSD)

task, an important and well-studied problem in the Natural Language Processing

community (Navigli , 2009).

5.5.4.1 Problem Formulation

The English language contains polysemous words, those that have multiple, dis-

tinct meanings, or senses, which are interpreted differently based upon the context

in which they occur. Consider the following sentences:

a. Deposit the check at the bank.

b. After canoeing, they rested at the bank.

The occurrences of the word bank in the two sentences clearly denote different mean-

ings: ‘financial institution’ and ‘side of a body of water,’ respectively. Word sense

disambiguation is the ability to identify the meaning of words in context in a compu-

tational manner (Navigli , 2009). The task of WSD is critical to the field of NLP and

various formulations have been studied for decades.

Our interest is in general competence across a variety of domains, and so we

adopted the all-words WSD formulation, where the system is expected to disam-

biguate all open-class words in a text (i.e. nouns, verbs, adjectives, and adverbs).

As input, the agent receives a sequence of sentences from a text, each composed of
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a sequence of words. However, as the focus of this work is memory, not unsuper-

vised natural language processing, we supplemented the input with the following two

sources of additional structure, each of which is not uncommon in the WSD literature.

First, each input word is correctly tagged with its contextually appropriate part-of-

speech. Second, the agent is assumed to have access to a static machine-readable

dictionary (MRD), such that each lexical word/part-of-speech pair in the input cor-

responds to a list of word senses within the MRD. For each sense, the MRD contains

a textual definition, or gloss, and an annotation frequency from a training corpus.

Thus, for each input word, the agents task is to select an appropriate sense from the

MRD, from which there may be multiple equally valid options for the given linguistic

context.

5.5.4.2 Data Sets

To evaluate our work, we made use of three semantic concordances : each a textual

corpus and lexicon linked such that every substantive word in the text is linked to its

appropriate sense in the lexicon (Miller et al., 1993).

The first semantic concordance is SemCor, the biggest and most widely used sense-

tagged corpus, which includes 352 texts from the Brown corpus (Kucera and Francis ,

1967). We used the 186 Brown corpus files that have all open-class words annotated,

which includes more than 185,000 sense references to version 3 of WordNet (Miller ,

1995). WordNet 3, the most utilized resource for WSD in English, includes more

than 212,000 word senses. To prevent over-fitting in our results, we also utilized the

Senseval-2 and Senseval-3 all-words corpora (Edmonds and Kilgarriff , 2002), linked

with WordNet 3. These data sets are nearly two orders of magnitude smaller than

SemCor, comprising only 2,260 and 1,937 sense references, respectively.4

4The SemCor, Senseval-2, and Senseval-3 data sets are available to download at http://www.
cse.unt.edu/˜rada/downloads.html. WordNet is available to download at http://wordnet.
princeton.edu.
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5.5.4.3 Task Analysis

In our formulation of the WSD task, an agent is provided a lexical word/part-

of-speech pair and must select an appropriate sense, for the current context, from

amongst a static list defined by the MRD. Let s represent the set of candidate senses

from the MRD and let a represent the set of appropriate sense assignments in this

context.

Given an arbitrary input word, an important measure that characterizes the dif-

ficulty of the task is | s |, the cardinality of the set of candidate senses, referred to

as polysemy level in the literature. However, as some open-class words in all of our

data sets are tagged with more than one appropriate sense (0.33% in SemCor; 4.25%

Senseval-2; 1.91% Senseval-3), it is also important to consider | a |, the cardinality of

the set of appropriate sense assignments. In this section, we characterize these mea-

sures across each of the data sets, and resolve the joint distribution of these values to

derive expected task performance, given a random sense selection strategy.

To begin, we define a derived joint measure, certainty = |a|
|s| . For a given lexical

word/part-of-speech pair, since the set of suitable sense assignments is non-empty

(| a |> 0) and comprises a subset of the full set of candidate senses (a ⊆ s and | a |≤|

s |), the range of certainty is (0, 1], where a value of 1 is, intuitively, unambiguous

(any selection from amongst the candidate set is appropriate) and as a value becomes

closer to 0, it becomes increasingly ambiguous (an appropriate selection is increasingly

rare).

Given this nomenclature, Figure 5.7 represents the distribution of certainty within

the SemCor data set, plotting the cumulative proportion of corpus words against

certainty. Both this plot and the descriptive analysis below aggregate the distribution

with respect to part-of-speech; while our work does not investigate methods that

are differentially sensitive to part-of-speech, we see distinctions in this distribution,

which may be useful to future work. We only plot and textually analyze SemCor, the
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Figure 5.7: WSD: SemCor cumulative word proportion vs. certainty.

largest data set, but Table 5.2 summarizes pertinent outcomes for all three semantic

concordances.

We first draw out the proportion of words with certainty value 1, those that

require no disambiguation, by reading the second plotted point from the right for

each part-of-speech. While for adverbs and adjectives this statistic is about 39%

and 31%, respectively, for nouns and verbs it is about 19% and 5%. Across the

entirety of SemCor, this statistic is 19.54%, establishing the absolute minimum for

task performance in this formulation of WSD using SemCor. We next assess the

median certainty for each part-of-speech by reading the x-axis as each part-of-speech

intersects 50% on the y-axis. For adverbs, the median is 1
2
; for adjectives and nouns

it is 1
3
; for verbs it is 1

9
; and the overall median certainty in SemCor is 1

4
. Finally,

the average certainty, and thus the expected performance given a random-selection

strategy, is 38.73%.
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5.5.4.4 Baseline Task-Performance Results

To contextualize the performance results of a memory-based approach to the WSD

task, we first implemented a set of baseline algorithms from the WSD literature. The

results from these baselines are summarized in Table 5.3, including random selection,

derived as expected performance in the previous section. Note that all algorithms

we implement select a sense for all input words, and thus precision and recall are

identical for all results, so we simply report them jointly as “task performance.”

WordNet includes, for each word sense, an annotation frequency from the Brown

corpus and the first baseline selection policy, frequency bias, exploits this information

by choosing the most frequent sense for each lexical word/part-of-speech input pair.

As the SemCor textual corpus is a subset of the Brown corpus, we expected this

resource to be highly informative and, unsurprisingly, this algorithm yields nearly

twice the performance of pure random selection. As the Senseval data sets were

not derived from the Brown corpus, it is unsurprising that the absolute performance

advantage of this heuristic is not as great when applied to these corpora. However, the

relative improvement for Senseval-3 is greater than that of SemCor (98.33% versus

97.24%), which likely reflects the increased difficulty of Senseval-3 (see Table 5.2).

Incorporating a frequency bias is not uncommon in the WSD literature, sometimes

termed commonest, but it does tend to suffer, as found here, when the frequency

distribution of the MRD is not representative of the corpus.

The remaining baselines were two variants of the Lesk algorithm for word sense

disambiguation (Lesk , 1986). The Lesk algorithm is a commonly used baseline metric

Table 5.2: WSD: Semantic concordance task-analysis summary.
SemCor Senseval-2 Senseval-3

Unambiguous 19.54% 19.69% 15.02%
Median Certainty 0.25 0.25 0.2
Minimum Certainty 0.0169 0.0204 0.0169
Expected Performance 38.73% 40.56% 32.98%

98



(Vasilescu et al., 2004) that assumes that words in a given “neighborhood” (such as

a sentence) tend to share a common topic, and thus biases sense selection based upon

shared terms in sense definitions and context. We explored the classic algorithm, with

constant-sized neighborhood windows, as well as a “simplified” Lesk algorithm (Kil-

garriff and Rosenzweig , 2000), which defines word context as simply the terms in the

neighborhood, as opposed to their definitions. The performance of the Lesk family of

algorithms is known to be highly sensitive to the exact wording of sense definitions,

and so it is common to supplement Lesk with heuristics and additional sources of

semantic meaning, such as in Banerjee and Pedersen (2002). Thus, for both classic

and simplified Lesk, we evaluated four supplemental heuristics: (1) the use of a stop

list, which excludes definition terms that are common to the target language, such

as “a” and “the”; (2) excluding example sentences from sense definitions, to avoid

uninformative overlapping terms; (3) the use of the Porter Stemming (Porter , 2006)

algorithm to strip word suffixes, to facilitate overlap of words with common linguistic

roots; and (4) a bias towards the corpus frequency information, applied in the case

of equivalent sense evaluation. We evaluated the combinatorial set of these param-

eters across both algorithms. The maximum results for both classic and simplified

algorithms occurred using the stop list, pruned definitions, and frequency bias, but

not the Stemming algorithm. For the classic algorithm, we achieved maximum task

performance with a neighborhood size of 2. However, as summarized in Table 5.3,

the Lesk variants consistently underperformed, compared to frequency bias.

These baseline results are specific to our implementation and data sets, and are

Table 5.3: WSD: Baseline task-performance results.
SemCor Senseval-2 Senseval-3

Random 38.73% 40.56% 32.98%
Frequency Bias 76.39% 65.56% 65.41%
Lesk 63.40% 58.17% 53.46%
Simplified Lesk 65.52% 56.28% 53.66%
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not intended for representation of or comparison to modern NLP techniques, but

instead provide a reasonable baseline for our memory-based results.

5.5.4.5 A Memory-based Approach

The main thrust of this evaluation is to understand and develop memory mech-

anisms that effectively support agents in a variety of tasks, while computationally

scaling as the amount of stored knowledge grows to be very large. Thus far in this

section we have characterized one important task, word sense disambiguation, in-

cluding an analysis of WSD across three data sets and the types of performance we

can expect from baselines that do not adapt their sense selection policy to the task

instance. In this section we describe and evaluate a simple approach to the WSD

task that is available to those agents with a semantic memory.

Our approach is as follows: given a lexical word/part-of-speech input, the agent

cues its memory for a sense that satisfies these constraints and selects the first re-

trieved result. We make two assumptions in our evaluation of this approach. First,

the agent’s long-term memory is preloaded with at least the contents of the data set’s

MRD, which affords the agent the potential to perform perfectly on the task, as it is

not constrained by a limited vocabulary. In the case of our data sets, this assumption

requires that the agent’s memory mechanism scale computationally to at least the

knowledge contained in WordNet (which we showed as reasonable in Section 5.5.1).

Our second assumption is that immediately after the agent attempts to disam-

biguate a word, it is supplied with the set of appropriate senses for that input. This

evaluation paradigm is important to isolate the effect of memory bias: it eliminates

unintended divergent learning and result obfuscation, which could occur sans truthful

feedback.

In this evaluation, the agent’s a priori knowledge and approach to the WSD task

remains constant. However, we experimentally alter the agent’s semantic-memory
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retrieval mechanism, changing how correct sense assignments in the past bias future

retrievals. We investigate the degree to which the recency and frequency of past as-

signments inform future retrievals. Our set of experimental heuristics is motivated by

the rational analysis of memory (Anderson and Schooler , 1991), which demonstrated,

across a set of linguistic tasks, reliable relationships between recency and frequency of

past events and future memory accesses. When integrated within a memory system,

these retrieval heuristics are independent of the WSD task, and can thus be applied

and evaluated on additional WSD data sets, as well as tasks beyond WSD or linguistic

settings.

We evaluate recency and frequency biases individually, and then proceed to explore

the base-level activation model, which combines these heuristics. For each heuristic,

we apply a greedy selection strategy, retrieving the word sense with the greatest bias

value, and selecting randomly from amongst ties.

Unlike the non-adaptive WSD baselines, memory-endowed agents have the poten-

tial to improve with added corpus exposure, and thus we performed 10 sequential

runs for each experimental condition, where the agent attempts to disambiguate the

entirety of the corpus during each run. We report performance on the first, second,

and tenth run of each of the data sets: the first run affords direct comparison to base-

line results, the second run illustrates speed of learning, given relatively little corpus

exposure, and the tenth speaks to asymptotic performance. Tables 5.4, 5.5, and 5.6

report expected performance on SemCor, Senseval-2, and Senseval-3, respectively, as

opposed to the sample average of individual probabilistic runs, and thus even small

differences should be considered relevant.

5.5.4.6 Individual Memory Bias Task Results

The first heuristic we evaluate is recency, which biases ambiguous retrievals to-

wards the last selected sense for each input. This bias, related to the one sense per
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discourse heuristic (Gale et al., 1992), performs well if the same sense is used repeat-

edly in immediate succession, but does not improve performance after the first full

exposure to the data set, as demonstrated by no difference in performance between

runs 2 and 10, independent of the semantic concordance.

The next heuristic is frequency, which biases ambiguous retrievals towards the

sense that has been retrieved most often. This bias performs well if particular senses

of words are generally more common than others in a corpus, as opposed to being

highly dependent upon sentence context.

Finally, to establish an upper bound on the degree to which recency and frequency

can individually contribute to WSD performance, we implemented an oracle bias. For

each input, this heuristic scores both the recency and frequency algorithms described

above and returns the result from the two algorithms that provided the best score.

We draw two conclusions from the data in Tables 5.4, 5.5, and 5.6. First, under

the assumptions of our evaluation, the run 10 results suggest that memory retrieval

agents perform better than the baselines from Table 5.3, with the potential for ad-

ditional reasoning mechanisms to improve performance further. And second, nearly

all memory bias results for run 10 are better than all baselines in the respective test

set (excl. SemCor/Recency). This suggests that history of sense assignment, with

relatively little corpus exposure, yields a performance benefit in the WSD task, an

advantage that is not dependent upon MRD definition quality (unlike Lesk).

5.5.4.7 Base-Level Activation Task Results

The top two rows in Tables 5.4, 5.5, and 5.6 present evidence that recency and

frequency of word-sense assignment can individually yield performance benefits in

the WSD task. Additionally, the relative gain in the oracle results (up to nearly 8%

in SemCor) indicates that there is room for improvement. However, applying these

findings to a memory system requires a model of how these heuristics combine in a
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task-independent fashion to bias memory retrieval (recall that the oracle algorithm

is not possible to implement, as it requires the memory system to evaluate correct

sense assignments during word sense selection). In this section, we explore base-

level activation (Anderson and Schooler , 1991), a memory bias model that jointly

incorporates recency and frequency of memory access.

Base-level activation computes the activation bias of a memory using an exponen-

tially decaying memory-access history:

ln(
n∑
j=1

t−dj )

where n is the number of accesses of the memory, tj is the time since the jth access,

and d is a free decay parameter.

We performed exploratory sweeps within each data set for the decay parameters

and evaluated the base-level activation model in the same fashion as the individual

memory biases above (see the bottom row of Tables 5.4, 5.5, and 5.6): it performs

competitively and bests recency and frequency run 10 results in SemCor. The SemCor

results used a decay parameter of 0.7, whereas both Senseval corpora used 0.4.
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Table 5.4: WSD: Memory bias task performance results for SemCor.
Run 1 Run 2 Run 10

Recency 72.34% 74.43% 74.43%
Frequency 71.69% 76.21% 76.53%

Oracle 79.51% 83.77% 84.08%

Base-level 74.45% 77.90% 78.47%
SemCor

Table 5.5: WSD: Memory bias task performance results for Senseval-2.
Run 1 Run 2 Run 10

Recency 61.74% 84.02% 84.02%
Frequency 62.13% 88.89% 89.28%

Oracle 63.68% 89.93% 90.23%

Base-level 62.17% 87.01% 88.47%
Senseval-2

Table 5.6: WSD: Memory bias task performance results for Senseval-3.
Run 1 Run 2 Run 10

Recency 54.32% 79.29% 79.29%
Frequency 54.85% 84.30% 84.86%

Oracle 57.25% 86.23% 86.77%

Base-level 54.41% 82.19% 83.84%
Senseval-3

104



Table 5.7: WSD: Individual bias evaluation: maximum query time.
SemCor Senseval-2 Senseval-3

Recency 0.85 msec. 0.82 msec. 0.80 msec.
Frequency 0.87 msec. 0.82 msec. 0.78 msec.

5.5.4.8 Scalability Results

Our goal in this evaluation is to explore memory heuristics that are both effective

and efficient in the WSD task. The task-performance results suggest that incorporat-

ing recency and frequency of past memory access to bias future retrievals, both indi-

vidually and jointly, supports WSD task performance, as compared to non-memory

baselines. We now evaluate the degree to which these heuristics support efficient

WSD memory retrievals: we report the maximum time in milliseconds, averaged over

ten trials, for a Soar agent to retrieve a memory on a 2.8GHz Intel Core i7 processor.

As discussed in Section 5.4.3.1, the recency and frequency heuristics are locally

efficient : both rely upon memory statistics that can be maintained incrementally and

only update a single memory at a time. Hence, it is not surprising that both biases

perform faster than the 50-milliseconds threshold across all data sets (see Table 5.7).

However, base-level activation does not appear to be locally efficient: it includes a

time-decay component that changes frequently for all memories. We implemented a

highly optimized version and were able to achieve 13.25-milliseconds retrievals in Sem-

Cor; however, this time is not bounded, growing with the store size. This heuristic,

however, also affords a useful monotonicity: from the time that bias is calculated for

a memory, that value is guaranteed to over-estimate the true bias until the memory

is accessed again in the future. This characteristic affords a locally efficient approxi-

mation: the memory system updates activation only when a memory is accessed.

To evaluate this approximation, we consider query time, WSD task performance

(comparable to results in Tables 5.4, 5.5, and 5.6), and model fidelity (a measure of

interest to cognitive modelers), which we define as the smallest proportion of senses
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Table 5.8: WSD: Base-level activation approximation results.
SemCor Senseval-2 Senseval-3

Max. Query Time 1.34 msec. 1.00 msec. 0.67 msec.
Run 10 WSD Perf. 77.65% 89.03% 84.56%
Min. Model Fidelity 90.30% 95.70% 95.09%

that the model selected within a run that matched the results of the original model.

We implemented this approximation within the semantic memory module of Soar

and the results are summarized in Table 5.8 (d = 0.5). To guarantee constant time

bias calculation (Petrov , 2006), we used a history of size 10. We also applied an

incremental maintenance routine that updated memories that had not been accessed

for 100 time steps, so as to avoid stale bias values. The query times across all data

sets are far below our requirement of 50 milliseconds and an order of magnitude faster

than the original. The run 10 WSD results are comparable to the original, and model

fidelity is at or above 90% for all runs of all data sets. These results show that

our base-level activation approximation can support effective and efficient retrievals

across large stores of knowledge.

5.6 Discussion

In this chapter, we presented and evaluated techniques to enhance intelligent

agents with semantic memory. Our abstract representation (symbolic triples) is suf-

ficiently general (R3) for use in a variety of tasks, as evinced in the prolific use of the

declarative module of ACT-R. It also incorporates a task-independent (R6) processes

for the agent to deliberately and incrementally (R1) encode semantic knowledge, as

well as flexible (R5) retrievals that, in practice, scale to large stores of knowledge

(R4). We implemented this mechanism in the Soar cognitive architecture and evalu-

ated it in a variety of problem domains, including lexical queries, mobile robotics, and

word sense disambiguation. We showed that while the algorithms are not immune
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to properties of cues that negatively affect performance (e.g. low feature selectivity

and co-occurrence), the mechanism does support many cues and retrieval biases that

agents can apply to support task performance (R2).

5.6.1 Future Work

In order for a semantic-memory mechanism to fulfill the requirements imposed

by generally intelligent agents (Chapter II), computational-resource utilization must

be bounded. To bound computation time for cue matching, there is existing work

(Terrovitis et al., 2006) that incorporates additional indexing methods to account for

problematic cases of cue-feature co-occurrence and selectivity. However, we expect

that the greatest threat to bounded retrieval times is not feature matching, but in-

stead more complex retrieval biases, such as incorporation of context (e.g. spreading

activation; Anderson and Schooler , 1991). There is evidence that for these biases,

some benefits may come from parallel algorithms (e.g. Douglass and Myers , 2010),

but ultimately it is likely that our memory model will require a relaxed specification

of retrievals (i.e. heuristic search). However, as with all memory research, it will be

important to balance scaling (R4) with agent task performance (R5), and thus much

more work must be done to develop and evaluate agents that use semantic memory

in a variety of problem domains. This will entail research into general methods for

integrating semantic retrievals with agent reasoning in known tasks, as well as how

strategies for agents to learn to utilize semantic knowledge in novel situations.

A major weakness in our current approach is that we do not have good theory

for how agents accumulate semantic knowledge. In most of our evaluations, agents

deliberately encode task-relevant information. The implications of deliberate storage

are (1) that the agent must have task knowledge of what structures are useful to

encode over time; (2) this encoding is intertwined with, and may interrupt, agent

reasoning; and (3) there may be limitations as to the kinds of knowledge and reasoning
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that can be brought to bear on estimating the value of future knowledge (e.g. it can be

difficult to perform complex probabilistic reasoning in rules). In the mobile-robotics

evaluation (Section 5.5.3), we implemented a “mirroring” policy, whereby changes to

semantic objects in Soar’s working memory were automatically paralleled in semantic

memory. However, while mirroring ameliorates problem #2 (i.e. the agent does not

need to deliberately issue as many storage commands), it still requires that the agent

reason about initial storage (#1) and does not address issue #3. The declarative

module of ACT-R implements an automatic-encoding policy that captures all changes

to a set of working-memory buffers as new chunk instances; it is then activation that

helps to identify useful chunks for later retrieval (i.e. memory bias serves as a form of

selective utilization). Further research should explore the viability of this approach for

agents that persist for long periods of time, especially with respect to the implications

for bounding computational memory usage. Another interesting avenue of research is

the automatic encoding, or consolidation, of a subset of episodic-memory structures to

semantic memory. This approach has surface-level similarities to the Standard model

of memory consolidation in humans (Squire and Alvarez , 1995) and relates to our

intuitions as to the relative purpose of the dissociated memory mechanisms: episodic

automatically captures the details of experience and, over time, the more common

and context-independent features are transitioned to an abstracted semantic memory.

More generally, consolidation is just one direction for investigation of how a

semantic-memory mechanism integrates with other components and processes in a

general cognitive architecture. We have done some initial work to investigate how the

supplemental index of our semantic-memory mechanism can serve as a frugal source

of heuristic knowledge for recognition judgements (Li et al., 2012). Another fruit-

ful avenue will be to investigate the degree to which meta-data from other cognitive

mechanisms and processes (e.g. emotional appraisals; Marinier et al., 2009) can

improve the robustness of semantic retrievals across a variety of problem domains.
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CHAPTER VI

Competence-Preserving Retention of Learned

Knowledge

This chapter documents our progress in understanding the computational chal-

lenges involved in selectively retaining, or forgetting, learned knowledge while main-

taining agent proficiency across a variety of tasks.1 We begin with a motivational

description of forgetting in context of learning systems (Section 6.1); then discuss

related work (Section 6.2); continue to our functional specification of a selective-

retention policy as applied to memory mechanisms (Section 6.3); describe data struc-

tures and algorithms that efficiently implement the mechanism (Section 6.4); evaluate

the mechanism, as implemented within the Soar cognitive architecture (Section 6.5);

and conclude with a summary and discussion of future work (Section 6.6).

6.1 Motivation

Typical AI systems persist for short periods of time and/or have modest learn-

ing requirements. Generally intelligent agents, however, contend with complex, pro-

tracted tasks and must amass and effectively draw upon large stores of experience.

For these systems, accumulation of large amounts of information over long agent

lifetimes can lead to the computational-performance degradation.

1This work was previously published in (Derbinsky and Laird , 2012a,b).
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This issue, where more knowledge can harm problem-solving performance, has

been dubbed the utility problem, and has been studied in several contexts. Markovitch

and Scott (1988) have characterized different strategies for dealing with the utility

problem in terms of information filters applied at different stages in the problem-

solving process. One common strategy that is relevant to generally intelligent agents

is selective retention, or forgetting, of learned knowledge. The benefit of this ap-

proach, as opposed to selective utilization, is that all available knowledge is brought

to bear on problem solving, a property that may be crucial for agent competence

in complex tasks. However, it can be challenging to devise forgetting policies that

work well across a variety of problem domains, effectively balancing the task perfor-

mance of agents with reductions in retrieval time and storage requirements of learned

knowledge. In context of the memory requirements for generally intelligent agents,

forgetting knowledge is a challenging problem that arises at the intersection of scal-

ing computational performance (R4) while still providing effective access (R5) in a

task-independent fashion (R6).

In response, we present and evaluate a task-independent framework for selective

retention of learned knowledge, which investigates a core hypothesis: it is rational for

an agent’s cognitive architecture to forget a unit of knowledge when there is a high

degree of certainty that it is not of use, as calculated by base-level activation (Ander-

son and Schooler , 1991), and that it can be reconstructed in the future if it becomes

relevant. In our evaluation, we demonstrate two instances of this framework which,

when implemented in Soar, improve agent reactivity and scaling, while maintaining

problem-solving competence.

6.2 Related Work

Previous cognitive-modeling research has investigated forgetting in order to ac-

count for human behavior and experimental data. As a prominent example, memory
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decay has long been a core commitment of the ACT-R theory (Anderson et al., 2004),

as it has been shown to account for a class of memory retrieval errors (Anderson et al.,

1996). Similarly, research in Soar investigated task-performance effects of forgetting

short-term (Chong , 2003) and procedural (Chong , 2004) knowledge. By contrast, the

motivation for and outcome of this work is to investigate the degree to which selective

retention can support long-term, real-time agents in complex tasks.

Prior work has demonstrated the potential for cognitive benefits of memory decay,

such as in task-switching (Altmann and Gray , 2002) and heuristic inference (Schooler

and Hertwig , 2005). In this work, we focus on improved reactivity and scaling.

We extend prior investigations of long-term symbolic learning in Soar (Kennedy

and Trafton, 2007), where the source of learning was primarily from internal problem

solving. We present evaluation domains that accumulate large amounts of information

from interaction with external environments.

6.3 Functional Specification

As described, there are two components to our selective-retention framework with

respect to an item of knowledge: (1) estimating whether the knowledge is of use and

(2) whether it can be reconstructed in the future if necessary. This section details the

first of these components, whereas the latter is left for the evaluation section, in which

we describe task-independent methods that are specific to memory implementations.

We use the base-level decay model in order to identify those items of knowledge

that have not been used recently and/or frequently, which is an indication of their

importance to agent reasoning. To provide a basis for our efficient implementation,

we now provide a formulation of this forgetting problem.
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6.3.1 The Forgetting Problem

Let memoryM be a set of elements, {m1,m2, . . . }. Let each elementmi be defined

as a set of pairs (aij, kij), where kij refers to the number of times element mi was

activated at time aij. We assume |mi| ≤ c: the number of activation events for any

element is bounded. These assumptions are consistent with the ACT-R declarative

memory when bounding chunk-history size (Petrov , 2006). This is also consistent

with the semantic memory in Soar, as described in Chapter V.

We assume that activation of an element m at time t is computed according to the

base-level activation model (Anderson and Schooler , 1991), where d is a fixed decay

parameter:

B(m, t, d) = ln(

|m|∑
j=1

kj · [t− aj]−d)

We define an element as decayed, with respect to a threshold parameter Θ ifB(m, t, d) <

Θ. Given a static element m, we define L as the fewest number of time steps required

for the element to decay, relative to time step t:

L(m, t, d,Θ) := inf{td ∈ N : B(m, t+ td, d) < Θ}

For example, element x = {(3, 1), (5, 2)} was activated once at time step three and

twice at time step five. Assuming decay rate 0.5 and threshold -2, x has activation

about 0.649 at time step 7 and is not decayed: L(x, 7, 0.5,−2) = 489.

During a time step t, the following actions can occur with respect to memory M :

S1. A new element is added to M .

S2. An existing element is removed from M .

S3. An existing element is activated y times.
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If S3 occurs with respect to element mi, a new pair (t, y) is added to mi. To maintain

a bounded history size, if |mi| > c, the pair with smallest a (i.e. the oldest) is removed

from mi.

Thus, given a memory M , we define that the forgetting problem, at each time

step, t, is to identify the subset of elements, D ⊆M , that have decayed since the last

time step.

6.4 Efficient Implementation

Given this problem definition, a näıve approach is to determine the decay status of

each element every time step. This test requires computation O(|M |), scaling linearly

with average memory size. The computation expended upon each element, mi, will

be linear in the number of time steps where mi ∈ M , estimated as O(L) for a static

element.

Our approach draws inspiration from the work of Nuxoll et al. (2004): rather than

checking memory elements for decay status, “predict” the future time step when the

element will decay. First, at each time step, examine elements that either (S1) weren’t

previously in the memory or (S3) were activated. The number of items requiring

inspection is bounded by the total number of elements (|M |), but may be a small

subset. For each of these elements, predict the time of future decay (discussed shortly)

and add the element to a map, where the map key is the predicted time step and

the value is a set of elements predicted to decay at that time. If the element was

already within the map (S3), remove it from its old location before adding to its new

location. All insertions/removals require time at most logarithmic in the number of

distinct decay time steps, which is bounded by the total number of elements (|M |).

At any time step, the set D is those elements in the set indexed by the current time

step that are decayed.

Given an arbitrary activation history of bounded size, it is likely that there is no
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closed form solution for calculating L. Thus, to predict element decay, we perform a

novel, two-phase process. After a new activation (S3), we first employ an approxima-

tion that is guaranteed to underestimate the true value of L. If, at a future time step,

we encounter the element in D and it has not decayed, we then compute the exact

prediction using a binary parameter search. This approach solves the forgetting prob-

lem correctly with respect to the base-level activation model, but, as our evaluation

demonstrates, has the potential to considerably improve computational performance.

We approximate L for an element m as the sum of L for each independent pair

(a, k) ∈ m. Here we derive the closed-form calculation: given a single element pair at

time t, we solve for tp, the future time of element decay:

ln(k · [t− a]−d) = Θ

ln(k)− d · ln(tp + (t− a)) = Θ

tp = e
Θ−ln(k)

−d − (t− a)

Since k refers to a single time point, a, we can rewrite the summed terms as a product.

Furthermore, we time shift the decay term by the difference between the current time

step, t, and that of the element pair, a, thereby predicting L.

The primary source of underestimation in our approximation is that, with respect

to the exponential decay of linearly increasing time spans, the sum of logs is less than

the log of a sum: for x > 2 and y > 2, ln(x−d+y−d) > ln(x−d)+ln(y−d). Additionally,

for each pair, we require that the solution of the approximation computation be a

non-negative integer (i.e. a prediction of a future, discrete time step), which may not

occur if the time step, a, is sufficiently old, and the number of activations at that time

step, k, is relatively small. To satisfy this requirement, we apply the floor function to

computations and discard negative values; these operations represent the secondary

source of underestimation in this approach.
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As an illustrative example, let us reconsider element x = {(3, 1), (5, 2)} (see Sec-

tion 6.3.1). Previously we computed that L(x, 7, 0.5,−2) = 489, and thus without fur-

ther activation, element x should be considered decayed at time point 7 + 489 = 496.

If we were to apply our two-phase approach at time step t = 7, we first compute

the approximation: 50 time steps for pair (3, 1) (b50.598c) and 216 time steps for

pair (5, 2) (b216.393c), therefore approximating L = 266. Assuming no further

activity, we would then re-examine element x at time step t = 7 + 266 = 273:

B(x, 273, 0.5) = −1.698. Since the element is not decayed (−1.698 > Θ = −2),

we perform binary parameter search. Establishing the search range will require

dlog2223e = 8 evaluations (496−273 = 223), and search within the range of [128, 256]

will require, on average, an additional log2128 = 7 evaluations. If the element had

been removed (S2) before time point t = 273, the binary parameter search would

not have been performed. If the element had been activated (S3) before time point

t = 273, we would have used the approximation again, postponing the search. If

our approach did not make use of the approximation, the binary parameter search

would have required 1 additional evaluation to establish the range (dlog2496e = 9)

and an additional 1 evaluation to search (log2256 = 8). Appendix I provides a concise

description of this algorithm.

6.4.1 Analysis

Computing the approximation for a single pair takes constant time, O(1). How-

ever, the absolute time for this computation may be significant as compared to other

memory operations. Fortunately, for fixed values of parameters d and Θ, the result

of the relatively expensive component of the computation, the exponential, can be

cached for common values of k.

Overall approximation computation is linear in the number of pairs, which is

bounded by c, and therefore O(1). The computation required for binary parameter
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search of an element is O(log2L). However, this computation is only necessary if the

element has not decayed, or removed from M .

This approach assumes that the number of memory activations in a single time

step will be few, relative to the overall size of memory. This assumption regarding

memory dynamics is closely related to temporal contiguity (discussed in context of

episodic memory, Chapter IV), which claims that the world changes slowly, and thus

changes to agent state, from episode to episode, will be few relative to the overall

size of state. If temporal contiguity does not hold, this approach will likely perform

comparably with a näıve forgetting method.

6.5 Evaluation

Our goal in this section is to understand the degree to which this forgetting frame-

work supports useful operation across a variety of domains while scaling to large stores

of knowledge and long agent lifetimes. We begin with a focussed evaluation, where

we evaluate the quality and efficiency of our novel decay approximation on synthetic

data. We then present two tasks where effective behavior requires that the agent

accumulate large amounts of information from the environment, and where over time

this learned knowledge overwhelms reasonable computational limits. In response, we

have implemented our forgetting framework within the working and procedural mem-

ory mechanisms of Soar v9.3.2. These evaluations demonstrate how task-independent

policies improve agent reactivity and scaling, while maintaining problem-solving com-

petence.

6.5.1 Synthetic Data

In this section, we focus on the quality and efficiency of our prediction approach

and utilize synthetic data. Our data set comprises 50,000 memory elements, each

with a randomly generated pair set. The size of each element was randomly selected
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Figure 6.1: Synthetic: evaluation of decay-approximation quality.

from between 1 and 10, the number of activations per pair (k) was randomly selected

between 1 and 10, and the time of each pair (a) was randomly selected between 1

and 999. We verified that each element had a valid history with respect to time step

1000, meaning that each element would not have decayed before t = 1000. Also, each

element contained a pair with at least one access at time point 999, which simulated

a fresh activation (S3). For all synthetic experiments we used decay rate d = 0.8 and

threshold Θ = −1.6. Given these constraints, the largest possible value of L for an

element is 3,332.

We first evaluate the quality of the decay approximation. In Figure 6.1, the y-axis

is the cumulative proportion of the elements and the x-axis plots absolute temporal

error of the approximation, where a value of 0 indicates that the approximation

was correct, and non-zero indicates how many time steps the approximation under-

predicted. We see that the approximation was correct for over 60% of the elements,

but did underestimate over 500 time steps for 20% of the elements and over 1000 time

steps for 1% of the elements. Under the constraints of this data set, it is possible for

this approximation to underestimate up to 2084 time steps.

We also compared the prediction time, in microseconds, of the approximation

to an exact calculation using binary parameter search. The maximum computation
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Figure 6.2: Synthetic: evaluation of decay-approximation complexity (“approx”) as
compared to binary parameter search (“bsearch”).

time across the data set was > 19x faster for the approximation (1.37 vs. 26.28

µsec./element) and the average time was > 15x faster (0.31 vs. 4.73 µsec./element).

We also confirmed our complexity analysis, as shown in Figure 6.2, which plots com-

putation time versus L. We did not compare these results with a nave approach, as

results would depend upon a model of memory size (|M |).

In summary, this evaluation provides evidence that our decay approximation im-

proves computational performance of forgetting, as compared to binary parameter

search: the experimental results show that the first phase of our implementation is a

high-quality approximation and is an order of magnitude less costly than the exact

calculation in the second phase.

6.5.2 Mobile Robotics

In this evaluation, we revisit the work with mobile robotics that was described in

Section 5.5.3. The robot’s task is to visit every room in a large building, for which

it visits over 100 rooms and takes about 1 hour of real time. During exploration, it

incrementally builds an internal topological map, which it reasons about and plans

using in order to find efficient paths for moving to distant rooms it has sensed but
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not visited. The agent uses episodic memory to recall objects and other task-relevant

features during exploration.

In the previous experiment, we showed that semantic memory improved the

agent’s ability to reason in large domains over long periods of time while staying re-

active to environmental dynamics. This was achieved by partitioning knowledge into

local/short-term and distal/long-term, thereby improving episodic-reconstruction time.

In that experiment, we provided the agent the necessary task knowledge of how to

perform this partitioning. In this evaluation, we apply our task-independent forget-

ting framework to Soar’s working memory, resulting in automatic working-memory

pruning that is comparable to task-specific rules and improves decision-cycle time.

We first describe the integration with Soar and then relate the results of our empirical

evaluation.

6.5.2.1 Selective Retention in Working Memory

The core intuition of our working-memory retention policy is to remove the aug-

mentations of objects that are not actively in use and that the model can later re-

construct from long-term semantic memory, if they become relevant. We characterize

WME usage via the base-level activation model, whereby the primary activation event

for a working-memory element is the firing of a rule that tests or creates that WME.

Also, when a rule first adds an element to working memory, the activation of the new

WME is initialized to reflect the aggregate activation of the set of WMEs responsible

for its creation (such as to make sure newly created elements have an opportunity to

participate in reasoning). This model of activation sources, events, and decay is task

independent.

We now specify our working-memory selective-retention policy. At the end of

each decision cycle, Soar removes from working memory each element that satisfies

all of the following requirements, with respect to τ , a static, architectural threshold
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parameter:

W1. The WME was not encoded directly from perception.

W2. The WME is operator-supported.

W3. The activation level of the WME is less than τ .

W4. The WME augments an object, o, in semantic memory.

W5. The activation of all augmentations of o are less than τ .

We adopted requirements W1-W3 from Nuxoll et al. (2004), whereas W4 and W5

are novel. Requirement W1 distinguishes between the decay of representations of

perception, and any dynamics that may occur with actual sensors, such as refresh

rate, fatigue, noise, or damage. Requirement W2 is a conceptual optimization: as

operator-supported WMEs are persistent, while instantiation-supported structures

are direct entailments, if we properly manage the former, the latter are handled au-

tomatically. This means that if we properly remove operator-supported WMEs, any

instantiation-supported structures that depend on them will also be removed, and

thus our mechanism only manages operator-supported structures. The concept of

a fixed lower bound on activation, as defined by W3, was adopted from activation

limits in ACT-R (Anderson et al., 1996), and dictates that working-memory elements

will decay in a task-independent fashion as their use for reasoning becomes less re-

cent/frequent.

Requirement W4 dictates that our mechanism only removes elements from work-

ing memory that can be reconstructed from semantic memory. From the perspective

of cognitive modeling, this constraint on decay resembles a working memory that is

in part an activated subset of long-term memory (Jonides et al., 2008). Function-

ally, requirement W4 serves to balance the degree of working-memory decay with

support for sound reasoning. Knowledge in Soar’s semantic memory is persistent,
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though may change over time. Depending on the task and the models knowledge-

management strategies, it is possible that any removed knowledge may be recovered

via deliberate reconstruction from semantic memory. Additionally, knowledge that is

not in semantic memory can persist indefinitely to support agent reasoning.

Requirement W5 supplements W4 by providing partial support for the closed-

world assumption. W5 dictates that either all object augmentations are removed,

or none. This policy leads to an object-oriented representation whereby procedural

knowledge can distinguish between objects whose augmentations have been forgotten,

and thus have no features or relations, and those that simply are not augmented

with a particular feature or relation. W5 makes an explicit tradeoff, weighting more

heavily model competence at the expense of the speed of working-memory decay.

This requirement resembles the declarative module of ACT-R, where activation is

associated with each chunk and not individual slot values.

6.5.2.2 Results

In our experiments, we aggregate working-memory size and maximum decision

time for each 10 seconds of elapsed time, all of which is performed on an Intel i7

2.8GHz CPU with 8GB RAM, running Soar v9.3.2. Because each experimental run

takes 1 hour, we did not duplicate our experiments sufficiently to establish statistical

significance and the results we present are from individual experimental runs. How-

ever, we found qualitative consistency across our runs, such that the variance between

runs is small as compared to the trends we focus on below.

We make use of the same agent for all experiments, but modify small amounts of

procedural knowledge and change architectural parameters, as described here. The

baseline model (A0) maintains all declarative map information both in Soar’s work-

ing and semantic memories. A slight modification to this baseline (A1) includes

hand-coded rules to prune away rooms in working memory that are not required for
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Figure 6.3: Mobile Robotics: working-memory size comparison.

immediate reasoning or planning (this was the “Semantic Memory” agent in Section

5.5.3). The experimental model (A2) makes use of our working-memory retention pol-

icy and we explored different values of the base-level decay rate (c = 10 and τ = −2

for all models).

Figure 6.3 compares working-memory size between conditions A0, A1, and A2 over

the duration of the experiment. We find that the greater the decay-rate parameter

for A2, the smaller the working-memory size, where a value of 0.5 qualitatively tracks

A1. This finding suggests that our policy, with an appropriate decay, keeps working-

memory size comparable to that maintained by hand-coded rules.

Figure 6.4 compares maximum decision-cycle time in milliseconds, between con-

ditions A0, A1, and A2 as the simulation progresses. The dominant cost reflected

by this data is time to reconstruct prior episodes that are retrieved from episodic

memory. We see a growing difference in time between A0 and A2 as working memory

is more aggressively managed (i.e. greater decay rate), demonstrating that episodic

reconstruction, which scales with the size of working memory at the time of episodic

encoding, benefits from selective retention. We also find that with a decay rate of 0.5,
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Figure 6.4: Mobile Robotics: maximum decision-time comparison.

our mechanism performs comparably to A1. We note that without sufficient working-

memory management (A0; A2 with decay rate 0.3), episodic-memory retrievals are

not tenable for a model that must reason with this amount of acquired informa-

tion, as the maximum required processing time exceeds the reactivity threshold of 50

milliseconds.

6.5.2.3 Discussion

It is possible to write rules that prune Soars working memory; however, this

task-specific knowledge is difficult to encode and learn, and interrupts deliberate

processing.

In this evaluation, we presented and evaluated a novel approach that utilizes a

memory hierarchy to bound working-memory size while maintaining sound reason-

ing. This approach assumes that the amount of knowledge required for immediate

reasoning is small relative to the overall amount of knowledge accumulated by the

model. Under this assumption, our policy scales even as learned knowledge grows

large over long trials. We note that since Soar’s semantic memory can change over
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time and is independent of working memory, our selective-retention policy does admit

a class of reasoning error wherein the contents of semantic memory are changed so as

to be inconsistent with decayed WMEs. However, this corruption requires deliberate

reasoning in a relatively small time window and has not arisen in our agents.

While the model completed this task for all conditions reported here, at larger

decay rates (≥ 0.6) the model thrashed because sufficient map information was not

held in working memory long enough to complete deep look-ahead planning. This sug-

gests additional research is needed on either adaptive decay-rate settings or planning

approaches that are robust in the face of memory decay.

6.5.3 Multiplayer Dice Game

In this evaluation, we extended an existing system (Laird et al., 2011a) where Soar

plays Liar’s Dice, a multi-player game of chance. The rules of the game are numerous

and complex, yielding a task that has rampant uncertainty and a large state space

(millions-to-billions of relevant states for games of 2-4 players). Prior work has shown

that RL allows Soar models to significantly improve performance after playing a

few thousand games. However, this involves learning large numbers of RL rules to

represent the state space and while Soar can remain reactive even with millions of

rules, the associated computational memory growth is intractable. In this evaluation,

we apply our task-independent forgetting framework to Soar’s procedural memory,

resulting in automatic rule forgetting that greatly decreases memory requirements,

while maintaining efficient processing and competence in the task. We first describe

the integration with Soar and then relate the results of our empirical evaluation.

6.5.3.1 Selective Retention in Procedural Memory

The intuition of our procedural-memory retention policy is to remove productions

that are not actively used and that the model can later reconstruct via deliberate

124



subgoal reasoning, if they become relevant. We utilize the base-level activation model

to summarize the history of rule firing.

At the end of each decision cycle, Soar removes from procedural memory each rule

that satisfies all of the following requirements, with respect to parameter τ :

P1. The rule was learned via chunking.

P2. The rule is not actively firing.

P3. The activation level of the rule is less than τ .

P4. The rule has not been updated by RL.

We adopted P1-P3 from Chong (2004), whereas P4 is novel. Chong was model-

ing human skill decay, and did not delete productions, so as to not lose each rules

activation history. Instead, decayed rules were prevented from firing, similar to below-

utility-threshold rules in ACT-R. P1 is a practical consideration to distinguish learned

knowledge from “innate” rules developed by the agent designer, which, if modified,

would likely break the agent. P2 recognizes that matched rules are in active use and

thus should not be forgotten. P3 dictates that rules will decay in a task-independent

fashion as their use for reasoning becomes less recent/frequent. We note that for

fixed parameters (d and τ) and a single activation, the base-level activation model is

equivalent to the use-gap heuristic of Kennedy and Trafton (2007). However, the time

between sequential rule firings ignores firing frequency, which the base-level activation

model incorporates.

Requirement P4 attempts to retain only those rules that the agent cannot regen-

erate via chunking. Chunking is a process that compiles existing knowledge applied

in subgoal reasoning. Chunked rules that have been updated by RL encode expected

utility information, which is not captured by other learning mechanisms. Because

this information is difficult, if not impossible, to reconstruct, these rules are retained.
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6.5.3.2 Results

The agent we use for all experiments learns two classes of rules: RL rules, which

capture expected action utility, and symbolic game heuristics. Our experimental

baseline (B0) does not include selective retention. The first experimental modification

(B1) implements our selective-retention policy, but does not enforce requirement P4

and is thereby comparable to prior work (Kennedy and Trafton, 2007; Chong , 2004).

The second modification (B2) fully implements our policy. We experiment with a

range of representative decay rates, including 0.999, where rules not immediately

updated by RL are deleted (c = 10, τ = −2 for all).

We alternated 1,000 2-player games of training then testing, each against a non-

learning version of the agent. After each testing session, we recorded maximum

memory usage (dominated, in this task, by procedural memory), task performance

(% games won), and average decisions/task action. We do not report maximum

decision time, as this was below 6 milliseconds for all conditions (Intel i7 2.8GHz CPU,

8GB RAM, Mac OS v10.7.3, Soar v9.3.2), which is well within our 50-milliseconds

threshold. We collected data for all conditions in at least three independent trials of

40,000 games. For conditions that used selective retention, we were able to gather

more data in parallel, due to reduced memory consumption (six trials for d = 0.35,

seven for remaining).

Figure 6.5 presents average memory growth, in megabytes, as the agent trains.

For all agents, the memory growth of games 1-10K follows a power law (R2 ≥ 0.96),

whereas for 11-40K, growth is linear (R2 ≥ 0.99). These plots indicate that memory

usage for the baseline (B0) and the slowly decaying agent (B2, d = 0.3) is much

greater, and faster growing, than agents that more aggressively decay. It also shows

that there is a diminishing benefit from faster decay (e.g. d = 0.5 and d = 0.999 for

B2 are indistinguishable). Even small differences in this plot are significant: error

bars of ±1 standard deviation were not plotted, as they were not visible for all data
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Figure 6.5: Dice: Average memory usage. Values of d = 0.5 and d = 0.999 for B2 are
indistinguishable. Differences are significant: error bars of ±1 standard
deviation were not plotted, as they were not visible.

points.

Figure 6.6 presents average task performance after 1,000 games of training, where

the error bars represent ±1 standard deviation. This data shows that given the inher-

ent stochasticity of the task, there is little, if any, difference between the performance

of the baseline (B0) and decay levels of B2. There appears to be a slight trend of

improvement in B2 as the decay rate increases; however, we have no mechanistic

explanation for this difference and attribute it to fluctuations in the task. However,

by comparing B0 and B2 to B1, it is clear that without P4, the agent suffers a

dramatic loss of task competence. For clarity, the agent begins by playing a non-

learning copy of itself and learns from experience with each training session. While

the B0 and B2 agents improve from winning 50% of games to 75-80%, the B1 agent

improves to below 55%. We conclude that a selective-retention policy that only in-

corporates production-firing history (e.g. Chong , 2004; Kennedy and Trafton, 2007)

will negatively impact performance in tasks that involve informative interaction with

an external environment. Our policy incorporates both rule-firing history and rule

reconstruction, and thus retains this source of feedback.
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Figure 6.7: Dice: Average decisions/task action ±1 standard deviation.

Finally, Figure 6.7 presents average number of decisions for the model to take an

action in the game after training for 10,000 games. In prior work (e.g. Kennedy and

Trafton, 2007), this value was a major performance metric, as it reflected the primary

reason for learning new rules. In this work, each decision takes very little time, and

so the number of decisions to choose an action is not as crucial to task performance

as the selected action. However, these data show that there exists a space of decay

values (e.g. d = 0.35) in which memory usage is relatively low and grows slowly

(Figure 6.5), task performance is relatively high (Figure 6.6), and the model makes

decisions relatively quickly (Figure 6.7).
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6.5.3.3 Discussion

This evaluation proposes an approach to developing agents that improve using

RL in tasks with large state spaces. Currently, it is typical to explicitly represent the

entire state space in the value function, which is not feasible in complex problems.

Instead, Soar learns rules to represent only those portions of the space it experiences,

and our policy retains only those rules that include feedback from environmental

reward. Future work needs to validate this approach in other domains.

6.6 Discussion

In this chapter, we presented a framework to forget items of knowledge in mem-

ory mechanisms while maintaining agent task proficiency. The main hypothesis of

the framework is that a cognitive architecture should remove knowledge that is likely

not useful, according to the base-level activation model, and that can likely be re-

constructed if necessary. We also presented and evaluated task-independent (R6)

algorithms to efficiently integrate this within a cognitive architecture; we evaluated

this mechanism within the working- and procedural-memory systems of Soar, and

showed that they reduced computational-resource consumption (R4), while main-

taining agent task proficiency (R5), in two complex tasks that required a great deal

of environmental learning over long periods of time.

6.6.1 Future Work

There are many other facets of forgetting that are ripe for research. For exam-

ple, in this work, we estimated importance via the base-level activation mode, which

estimates future importance solely on the history of past usage. However, within a

general cognitive architecture there likely are additional sources of predictive informa-

tion about knowledge utilization and importance. For example, it is well documented
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that for humans, emotionally charged events are better remembered than neutral

ones (e.g. Paré, 2003), and so it would be useful to explore the ways in which forget-

ting policies that incorporate emotional appraisals (Marinier et al., 2009) and agent

arousal (Nuxoll et al., 2004) would impact the computational resource versus task

performance tradeoff. This work also assumes that forgetting should function uni-

formly over time. However, given a hierarchy of multiple memory mechanisms over

long periods of time, there may be benefits in gradational approaches to forgetting

policies, with respect to time scales. Additionally, this work posits a static threshold

of forgetting, but more adaptive policies could be productive, as well as agents that

can learn strategies to exploit knowledge about their own selective-retention policies.

Markovitch and Scott (1988) laid out a framework for contending with large-scale

learning systems, of which selective retention is just one layer. Chapters (IV and

V) allude to the possibility that selective acquisition is another important avenue for

research, as well as the interaction between encoding and forgetting processes in a

long-lived agent. It seems likely that jointly considering the benefits of both these

processes, in context of the requirements of generally intelligent agents, would lead

to a space of robust policies for incrementally building up useful knowledge, while

adhering to the computational limits of bounded agents.

Of course, to make progress on these lines of inquiry will require a much broader

empirical evaluation than was presented in this chapter. A specific weakness of this

work was that the agents only worked on a single task: to make viable progress to-

wards effective and efficient selective-policies for generally intelligent agents, however,

we need much more complex sets of evaluation tasks, including those that are novel

to agents.
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CHAPTER VII

Summary and Conclusion

In this chapter, we revisit the memory requirements imposed by generally intelli-

gent agents and discuss the progress we’ve made, as well as directions for future work.

We then summarize the contributions of this dissertation and conclude.

7.1 Requirements Revisited

• R1. Incremental Learning

In Chapter IV we presented and evaluated a task-independent episodic-memory

mechanism that incrementally encodes an agent’s autobiographical history. We

demonstrated that for many tasks and domains, taking advantage of temporal

contiguity and structural regularity allows an agent’s cognitive architecture to

keep pace with environmental dynamics, supporting online storage and effective

retrievals.

In Chapter V we presented and evaluated a task-independent semantic-memory

mechanism that allows an agent to deliberately encode facts and relations about

the world that are independent of the context in which they were learned. We

demonstrated that for many tasks and domains, taking advantage of small ob-

ject cardinality and locally efficient biases allows an agent’s cognitive architec-

ture to keep pace with environmental dynamics, supporting online storage and
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effective retrievals.

In Chapter VI we presented and evaluated a task-independent framework for

allowing an agent to reduce the computational burden of large-scale learning

over long lifetimes. We demonstrated in two complex tasks that applications of

this framework can improve an agent’s ability to keep pace with environmental

dynamics, while not impeding task competence.

• R2. Comprehensive Learning

Chapters IV and V present and evaluate methods to integrate episodic and

semantic learning that scale to large amounts of knowledge over long agent

lifetimes. Prior work had recognized these forms of learning as functional in

specific problems, whereas this work demonstrated that generally intelligent

agents could make use of these mechanisms across a variety of tasks in complex

domains.

• R3. Diverse Representations

Chapters IV, V, and VI support symbolic representations that were demon-

strated as sufficiently general for a variety of tasks. However, future work should

investigate additional classes of representation, including those that support

continuous modalities (e.g. visual, auditory, etc.).

• R4. Scale Efficiently

The functional specifications that we presented in Chapters IV and V applied

strong constraints regarding the fidelity of stored knowledge and correctness of

retrievals with respect to relatively general query semantics. Consequently, both

the episodic and semantic memory models we presented have complexity profiles

that will not scale efficiently in the general case. However, we showed that under

certain assumptions of tasks, domains, and agent cues, these mechanisms can

work well in practice for a broad range of tasks, and we have provided predictive
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performance models to understand these bounds.

We expect that these methods will open up a new class of tasks and domains

with which researchers and system builders can apply intelligent agents. As

agent developers and cognitive modelers scale up, they will better understand

common use cases and regularities of domains and tasks, informing the next

wave of research in effective and efficient memory mechanisms, which will likely

entail heuristic and approximate methods. The work in Chapter VI, for ex-

ample, illustrates the flavor of research that is motivated by the need to scale

existing memory systems to complex domains and long agent lifetimes.

• R5. Effective Access

The functional specifications that we presented in Chapters IV and V supported

qualitative query semantics, which we demonstrated are useful for a variety of

problems and domains. As agent developers increasingly apply these methods,

however, they will likely identify new classes of useful retrievals. This flavor of

iterative research and development is common in cognitive-architecture inves-

tigations, wherein functional requirements drive effective and efficient methods

which open up the exploration of new, more challenging problems and capa-

bilities (e.g. Laird and Rosenbloom, 1996). Chapter VI is one example of the

challenges associated with simultaneously focussing on scalable methods and

effective access to task-relevant knowledge.

• R6. Task Independence

Chapters IV, V, and VI support representations and processes that are inde-

pendent of task and domain. To improve average-case performance, we have

made very general assumptions regarding state representations and dynamics

and have shown that these regularities are common in practice, and lead to

crucial advances in effective and efficient mechanisms.
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7.2 Future Work

The concluding sections of Chapters IV, V, and VI discussed focussed directions

for future research. Here we discuss more broad, integrative avenues of work.

7.2.1 Memory Space

We have investigated just two points in a large space of memory mechanisms (see

Appendix A). There are several other interesting regions for investigation, such as

effective and efficient declarative memory mechanisms for long-term goals (e.g. Li and

Laird , 2011) and emotion (e.g. Gomes et al., 2011). Additional work must also be done

for modality-specific memories, such as visual and auditiory. It is likely that stores

of knowledge from continuous modalities will require very different query semantics

for useful retrievals, as well as underlying implementations for efficient scaling.

7.2.2 Mechanism Integration

As we explore additional regions of memory space, and develop effective and effi-

cient implementations for generally intelligent agents, thoughtful integration of mul-

tiple, dissociated mechanisms will become an important research consideration. One

important issue that will arise is knowledge consistency: what should a cognitive ar-

chitecture and/or generally intelligent agent do when knowledge exists from multiple

stores that are contradictory? To contend with this problem, research for generally

intelligent agents will likely have to pool approaches from multiple fields, such as work

in knowledge-based systems that have dealt with automated methods for aspects of

this problem in unified stores (e.g. Lenat , 1995; Fahlman, 2006); database systems

that have considered this problem in context of human interaction for data integra-

tion (e.g. Lenzerini , 2002); and multi-agent systems that consider methods for solving

constrained problems in a distributed fashion (e.g. Yokoo and Hirayama, 2000).

134



7.2.3 Agent Development

Most intelligent systems today contend with a single, well-defined task and/or a

short lifetime. As these systems persist for long periods of time, utilizing memory

mechanisms for work on multiple, complex tasks in dynamic domains, there are nu-

merous research challenges that will arise in the development of agents. For instance,

how do agents develop strategies to best make use of multiple mechanisms, given an

evolving knowledge of their tradeoffs in efficiency, utility, and fidelity? Furthermore,

how can agents pool knowledge from dissociated stores and generalize experience that

can transfer to new problems? There are also numerous practical considerations of ex-

perimenting with, debugging, and evaluating long-living, learning systems, especially

when embedded within stochastic environments.

7.3 Research Contributions

The following list summarizes our major research contributions:

• Analysis of general properties of environments, tasks, and agents that

impact the development and utilization of effective and efficient memory mech-

anisms. Chapters IV and V describe how these regularities lead to efficient

algorithms, as well as describe and evaluate predictive models of how they im-

pact performance of running systems.

• Development of novel, and adaptation of existing, algorithms for memory

mechanisms that support effective access to agent experience while scaling, for

many tasks, to large amounts of knowledge over long agent lifetimes. Chapters

IV, V, and VI describe knowledge representation, data structures, algorithms,

complexity analysis, and issues of integration within a general cognitive archi-

tecture. For episodic memory, we developed a novel dynamic-graph index to

efficiently support storage of state changes, as well as a novel discrimination
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network (the DNF Graph) to support efficient, incremental scoring of episodes

in surface cue matching. For semantic memory, we extended work on inverted

indexes and statistical query optimization to scalably and efficiently support a

useful class of memory-retrieval bias functions (those that are locally efficient).

We also developed an algorithm to efficiently and correctly forget memories in

large memory stores according to the base-level decay model. We have imple-

mented all of this work in Soar v9.3.2, which is available as open source software

for free download, and researchers have already made use of these mechanisms

for independent work (e.g. Laird et al., 2010; Xu and Laird , 2010; Gorski and

Laird , 2011; Li and Laird , 2011; Xu and Laird , 2011).

• Broad evaluation of our methods across a variety of problem domains, includ-

ing linguistic tasks (e.g. word sense disambiguation, lexical queries), planning

problems, games (e.g. Infinite Mario, TankSoar, Eaters, Liar’s Dice), and mo-

bile robotics. Chapters IV, V, and VI describe experimental conditions and

results from scaling the amount of knowledge and runtime in these domains to

orders of magnitude larger and longer than previously reported in the research.

• Demonstrations of how agents that are endowed with effective and

efficient memory benefit across numerous tasks. These benefits include

support of general cognitive capabilities (e.g. Chapter IV), better reasoning

in task domains (e.g. Chapter V), and improved ability to scale to complex

problems (e.g. Chapter VI).

7.4 Conclusion

The goal of this dissertation has been to investigate architectural mechanisms

to support memory that scales to large amounts of knowledge and long agent life-

times. This has led to scalable, task-independent algorithms that improve the scope
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of learning and effectiveness of agent reasoning, as demonstrated in a variety of prob-

lem domains. Much like Rete (Forgy , 1982), these algorithms commit to very general

knowledge representations and operations, but provide efficient and useful access to

kinds of knowledge that are vital for generally intelligent agents. As a result, the

analyses and algorithms from this dissertation extend to cognitive architectures other

than Soar, as well as other agent-based systems that need to incorporate effective and

efficient memory functionality.

Theoretically, it is only those agents with access to prior experience that can

understand and exploit regularities of the world around them. More practically,

effective and efficient memory facilitates the development of intelligent systems that

are more adaptive, more robust, and longer lived, as well as modeling cognition in

a wider variety of task domains. By supporting large stores of knowledge, and long

agent lifetimes, this work expands the types of agents that can be developed and the

types of phenomena that can be modeled. While it is difficult to predict the degree

to which this dissertation will affect future research, I hope that this work provides a

computationally sound infrastructure upon which to understand and develop human-

level intelligence.
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APPENDIX A

The Space of Memory Models

Here we detail an initial characterization of the space of long-term memory sys-

tems, borrowing heavily from and generalizing Nuxolls breakdown of the space of

episodic memory systems 2007. We define a memory-system implementation as a

commitment to each feature from within the space defined by these dimensions, rep-

resented as (encoding, storage, retrieval). 1

A.1 Encoding

Initiation – Initiation encompasses the event conditions that trigger the encod-

ing and storage processes. These events may condition upon fixed architectural

characteristics of state (such as a temporal frequency) or may be accessible to

agent control knowledge.

Determination – Once initiated, the memory mechanism selects features of

agent state (or derivation thereof) that compose the knowledge to be stored,

as well as any additional context (temporal, spatial, etc) that may also be

associated with the knowledge.

1This space was originally published in Derbinsky and Gorski (2010).
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A.2 Storage

Granularity – Stored experience varies with the grain size at which knowledge

can accessed and modified. This may range from minute (such as the symbol

level), to moderate (an episode), to coarse (such as the entire knowledge store).

Dynamics – Knowledge in the memory system may change over time, such as

to bias retrieval or forget knowledge. The mechanisms that cause this change

may be fixed, condition upon agent knowledge, or deliberate agent action.

A.3 Retrieval

Accessibility – Experience encoded within the memory system may vary in

the degree to which it is exposed to other architectural mechanisms, such as to

maintain overall agent reactivity. For instance, a declarative long-term memory

may allow for enumeration of all stored memories.

Initiation – Initiation encompasses the event conditions that trigger the re-

trieval process. As with encoding initiation, these events may condition upon

fixed characteristics of state or may be accessible to agent knowledge/control.

Cue Determination – Once initiated, the memory system composes agent

state, knowledge, context, and/or [possibly inaccessible] meta-data to select or

create a retrieval cue.

Selection – When supplied a cue, the memory system implements a policy

for how stored knowledge is matched with respect to the cue, which may be

restricted by time, computation, and/or number of results, as well as include

bias from agent state, context, and/or meta-data.

Result – When the memory system selects stored experience for retrieval, it
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may arbitrarily represent the knowledge, associated context, and aspects of the

retrieval process, such as match quality, for agent inspection.
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APPENDIX B

Episodic Memory: Relational Schemas

The tables below detail the relational tables for episodic memory (Chapter IV).

A “type” of “any” denotes no field type constraint.

B.1 Episode Registration (times)

Stores the temporal ids of stored episodes.

Field Type Notes
id integer temporal id

B.2 Temporal Symbol Hash (temporal symbol hash)

Stores hashes from a (constant, type) pair to a single integer.

Field Type Notes
id integer symbol hash

sym const any symbolic constant
sym type integer symbol type
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B.3 Persistent Variables (vars)

Stores persistent variables as key/value pairs.

Field Type Notes
id integer variable key

value any variable value

B.4 WMG: Identifier-Valued WMEs (edge unique)

Stores distinct WMEs that have identifiers (i.e. non-constant) values.

Field Type Notes
parent id integer unique WME id

q0 integer
existing graph node
(value 0 is root; refers to other values of q1 )

w integer
WME attribute
(refers to id in temporal symbol hash)

q1 integer
existing/new graph node
(value 0 is root;
refers to other values of q1 for existing)

B.5 WMG: Constant-Valued WMEs (node unique)

Stores distinct WMEs that have constant values.

Field Type Notes
child id integer unique WME id

parent id integer
existing graph node
(value 0 is root;
refers to other values of q1 )

attrib integer
WME attribute
(refers to id in temporal symbol hash)

value integer
WME value
(refers to id in temporal symbol hash)
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B.6 Long-Term Identifier Registration (lti)

Stores long-term identifier information.

Field Type Notes
parent id integer unique id (refers to parent id in edge unique)

letter integer ASCII value of identifier letter
num integer identifier number

time id integer
temporal id of promotion from short- to
long-term identifier (refers to id in times)

B.7 Intervals: Identifier-Valued WMEs, Now (edge now)

Stores the temporal id of the time at which identifier-valued WMEs that are

presently in working-memory were added.

Field Type Notes
id integer unique id (refers to parent id in edge unique)

start integer
temporal id when WME was added to
working memory (refers to id in times)

B.8 Intervals: Identifier-Valued WMEs, Point (edge point)

Stores the temporal interval for identifier-valued WMEs that persisted for only a

single episode.

Field Type Notes
id integer unique id (refers to parent id in edge unique)

start integer
temporal id when WME was added to
working memory (refers to id in times)
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B.9 Intervals: Identifier-Valued WMEs, Range (edge range)

Stores the temporal interval for identifier-valued WMEs that persisted for more

than a single episode.

Field Type Notes
id integer unique id (refers to parent id in edge unique)

start integer
temporal id when WME was added to
working memory (refers to id in times)

end integer
temporal id when WME was removed from
working memory (refers to id in times)

rit node integer related to relational-interval tree hashing

B.10 Intervals: Constant-Valued WMEs, Now (node now)

Stores the temporal id of the time at which constant-valued WMEs that are

presently in working-memory were added.

Field Type Notes
id integer unique id (refers to child id in node unique)

start integer
temporal id when WME was added to
working memory (refers to id in times)

B.11 Intervals: Constant-Valued WMEs, Point (node point)

Stores the temporal interval for node-valued WMEs that persisted for only a single

episode.

Field Type Notes
id integer unique id (refers to child id in node unique)

start integer
temporal id when WME was added to
working memory (refers to id in times)

145



B.12 Intervals: Constant-Valued WMEs, Range (node range)

Stores the temporal interval for constant-valued WMEs that persisted for more

than a single episode.

Field Type Notes
id integer unique id (refers to child id in node unique)

start integer
temporal id when WME was added to
working memory (refers to id in times)

end integer
temporal id when WME was removed from
working memory (refers to id in times)

rit node integer related to relational-interval tree hashing

B.13 Relational-Interval Tree: Left (rit left nodes)

Temporary table for relational-interval tree (left).

Field Type Notes
min integer
max integer

B.14 Relational-Interval Tree: Right (rit right nodes)

Temporary table for relational-interval tree (right).

Field Type Notes
node integer

146



APPENDIX C

Episodic Memory: Algorithms

The sections below detail the algorithms for episodic memory (Chapter IV).

C.1 Assumptions

I. Agent state is represented as a directed, connected graph rooted at node n0.

II. The state graph is a set: no two edges can have the same triple (parent, label,

value).

III. Episodes are automatically encoded and stored at some interval, which will

include zero or more changes to the graph, which can be captured as a sequence

of edge additions or removals.

IV. A retrieval cue is a rooted, directed, connected, acyclic graph.

V. Episodic retrieval returns the most recent episode that has the greatest number

of edges in common with cue leaves, with respect to root-to-leaf path.

VI. Symbolic constants (i.e. numbers and strings) have persistent identity that

must be maintained for accurate episodic reconstruction, while graph nodes do

not (all that is important is their relations to other nodes).
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C.2 Storage

list EdgeAdditions, EdgeRemovals

WorkingMemoryGraph WMG

state.root.wmgNode ← WMG.newNode()

function OnEdgeAddition(edge e)

EdgeAdditions.insert(e)

end function

function OnEdgeRemoval(edge e)

if EdgeAdditions.contains(e): EdgeAdditions.remove(e)

else: EdgeRemovals.insert(e)

end function

function GetWMGEdge(edge e)

for wmge in e.parent.wmgNode.outgoingEdges()

if ((wmge.label is e.label) and (wmge.inUse is false)) and

(isNode(wmge.value) is isNode(e.value))

if (isNode(e.value) and (e.value.wmgNode is null)): return wmge

elseif (wmge.value is e.value): return wmge

end if

end for

return null

end function
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function StoreEpisode(time t)

list IntervalStarts, IntervalEnds

for e in EdgeRemovals

IntervalEnds.insert(e.wmgEdge)

e.wmgEdge.inUse ← false

end for

EdgeRemovals.clear()

while not EdgeAdditions.empty()

for e in EdgeAdditions

if (not (e.parent.wmgNode is null))

WMGEdge wmge ← GetWMGEdge(e)

if (not (wmge is null))

e.wmgEdge ← wmge

wmge.inUse ← true

if (IntervalEnds.contains(wmge)): IntervalEnds.remove(wmge)

else: IntervalStarts.insert(wmge)

else

if (isNode(e.value) and (e.value.wmgNode is null)):

e.value.wmgNode ← WMG.newNode()

wmge ← WMG.insertEdge(e)

e.wmgEdge ← wmge

wmge.inUse ← true

IntervalStarts.insert(wmge)

end if
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EdgeAdditions.remove(e)

end if

end for

repeat

for wmge in IntervalStarts

wmge.startInterval(t)

end for

for wmge in IntervalEnds

wmge.endInterval(t)

end for

end function

C.2.1 Notes

Encoding occurs incrementally in response to state changes. As state edges are

added/removed, episodic memory maintains lists of these changes.

The storage process inspects the state-change lists. For added edges, those that

were not previously stored in episodic memory are added to the Working-Memory

Graph (WMG). Once all state edges are associated with WMG edges, the interval

lists are appropriately annotated with respect to the current time. Intervals are added

to a common interval tree, utilized during the reconstruction process.

This algorithm includes two optimizations. First, before creating a new WMG

edge, prior edges that are not in use for the current episode are tested (for possible

representational sharing). Second, new state edges can continue an existing interval

if the WMG edge is shared.
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C.3 Cue Matching

ValueMappingSAT values

EdgeSAT triggers

EndpointPriorityQueue epq

currentscore ← 0

currentepisode ← null

function GetWMGEdges(WMGNode wmgn, edge e)

ret = {}

for wmge in wmgn.outgoingEdges()

if (wmge.label is e.label)

if (isNode(e.value) and isNode(wmge.value)): ret.insert(wmge)

elseif (wmge.value is e.value): ret.insert(wmge)

end if

end for

return ret

end function

function AddValueMapping(WMGEdge wmge, CueEdge ce)

if (not values.containsKey(<ce.value,wmge.value>)):

values.insert(<ce.value,wmge.value>, [cueedges={}, prop={},

ct=0, perfect=0])

values[<ce.value,wmge.value>].cueedges[ce] ← 0

values[<ce.value,wmge.value>].perfect ←

values[<ce.value,wmge.value>].perfect + 1

end function
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function AddTrigger(WMGEdge wmge, CueEdge ce)

if (not triggers.containsKey(wmge)): triggers.insert(wmge, {})

triggers[wmge].insert(<<ce.value,wmge.value>, ce>)

end function

function AddDNFMapping(CueNode cn, WMGNode wmgn)

propset ← {}

for ce in cn.outgoingEdges()

for wmge in GetWMGEdges(wmgn, ce)

AddValueMapping(wmge, ce)

AddTrigger(wmge, ce)

propset.insert(<ce, wmge>)

if (isNode(ce.value) and (not isLeaf(ce)))

backpropset ← AddDNFMapping(ce.value, wmge.value)

for p in backpropset

values[<ce.value,wmge.value>].prop.insert(p)

end for

end if

end for

end for

return propset

end function

function BuildDNFGraph(cue c)

AddDNFMapping(c.root, n0)

end function
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function LoadPriorityQueue()

for t in triggers

pq.insertWithPriority(

<t.key, t.key.intervals.size()>,

EpFromEndpointIndex(t.key, t.key.intervals.size()))

end for

end function

function UpdateValueMappingScore(CueEdge ce, WMGEdge wmge, bool nowSatisfied)

inSAT ← values[<ce.value,wmge.value>].cueedges[ce]

if nowSatisfied

literalOn ← (inSAT is 0)

values[<ce.value,wmge.value>].cueedges[ce] ← (inSAT + 1)

if literalOn

oldCt ← values[<ce.value,wmge.value>].ct

propagate ← (oldCt is (values[<ce.value,wmge.value>].perfect - 1))

values[<ce.value,wmge.value>].ct ← (oldCt + 1)

if propagate

if isLeaf(ce): currentscore ← (currentscore + 1)

else

for p in values[<ce.value,wmge.value>].propset

UpdateValueMappingScore(p.first, p.second, true)

end if

end for

end if

end if
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else

literalOff ← (inSAT is 1)

values[<ce.value,wmge.value>].cueedges[ce] ← (inSAT - 1)

if literalOff

oldCt ← values[<ce.value,wmge.value>].ct

propagate ← (oldCt is values[<ce.value,wmge.value>].perfect)

values[t.first].ct ← (oldCt - 1)

if propagate

if isLeaf(ce): currentscore ← (currentscore - 1)

else

for p in values[<ce.value,wmge.value>].propset

UpdateValueMappingScore(p.first, p.second, false)

end if

end for

end if

end if

end if

end function

function UpdateEpisodeScore(WMGEdge wmge, bool nowSatisfied)

for t in triggers[wmge]:

UpdateValueMappingScore(t.first.first, t.first.second, nowSatisfied)

end function

function GotoNextRelevantEpisode()

p ← pq.peek

currentepisode ← EpFromEndpointIndex(p.first.intervals, p.second)
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while (EpFromEndpointIndex(pq.peek.first.intervals, pq.peek.second)

is currentepisode)

p ← pq.pop()

if (p.second > 0):

pq.insertWithPriority(<p.first, p.second-1>,

EpFromEndpointIndex(p.first.intervals, p.second-1))

UpdateEpisodeScore(p.first, (p.first.intervals[p.second] is end))

repeat

end function

function MatchCue(cue c)

time king ← null

highscore ← −∞

perfectscore ← 0

done ← false

for ce in c

if isLeaf(ce): perfectscore ← perfectscore + 1

end for

BuildDNFGraph(c)

LoadPriorityQueue()

while (done is false)

GotoNextRelevantEpisode()

if (currentscore > highscore)

highscore ← currentscore

king ← currentepisode

if (currentscore is perfectscore)
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if GraphMatch(c, currentepisode): done ← true

end if

end if

if pq.empty(): done ← true

repeat

if (king is null): failure

else: return king

end function

C.3.1 Notes

The DNF Graph builds incremental SAT structures that associate values of edges

in the WMG and cue. These structures include satisfaction of incoming cue edges,

propagation directives, and state of satisfaction (current value and perfect).

Based upon these data structures, the trigger map identifies which interval lists

are to be walked, and which value maps will be updated by each endpoint. These

triggers are loaded into a priority queue, keyed on the episode of the most recent

endpoint.

The interval-walking algorithm pulls all interval endpoints for the next episode rel-

evant to the cue. For each endpoint that is walked, the episode is scored incrementally

via DNF-Graph updates.

Once all the endpoints for the episode are pulled from the priority queue, the

episode is assessed as a surface match (i.e. all features independently via DNF Graph).

If it is greater than any previous episodes, it becomes the best match thus far. If it is

perfect as a surface match, it will undergo structural match (i.e. GraphMatch) and,

if it passes, search is concluded. Otherwise, search continues until the priority queue

is devoid of endpoints to walk.
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C.4 Reconstruction

function ReconstructEpisode(time t)

list wmgedges, epedges

wmgedges = IntervalIntersectionQuery(t)

for wmge in wmgedges

epedges.insert(<wmge.parent, wmge.label, wmge.value>)

end for

return epedges

end function

C.4.1 Notes

Finding all edges that comprise an episode is an interval-intersection query (i.e.

find all temporal intervals that intersect a single point in time). To support executing

this query efficiently, we implement a Relational-Interval Tree (Kriegel et al., 2000)

over Working-Memory Graph intervals. Once the intervals are identified, we use the

structure of the WMG to reproduce edge labels/relations.
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APPENDIX D

Episodic Memory: Evaluation Cues

These cues were used for the evaluation in Chapter IV.

D.1 TankSoar

1. (<cue> ˆsuperstate nil)

2. (<cue> ˆio.input-link.health 1000)

3. (<cue> ˆio.input-link.x 1)

4. (<cue> ˆio.input-link.y 1)

5. (<cue> ˆio.input-link <il>)

(<il> ˆx 1 ˆy 1)

6. (<cue> ˆio.input-link.radar <r>)

7. (<cue> ˆio.input-link.radar.open <o>)

8. (<cue> ˆio.input-link.radar.open.position center)

9. (<cue> ˆsquare <sq>)
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10. (<cue> ˆsquare <sq>)

(<sq> ˆx 1 ˆy 1)

11. (<cue> ˆmap.square <sq>)

12. (<cue> ˆmap.square <sq>)

(<sq> ˆx 1 ˆy 1)

13. (<cue> ˆio.input-link <il>)

(<il> ˆx 1 ˆy 8 ˆdirection south ˆradar-status on ˆradar-setting 13)

14. (<cue> ˆio.input-link.radar.missiles <m>)

15. (<cue> ˆio <io>)

(<io> ˆinput-link <il>

ˆoutput-link <ol>)

(<ol> ˆrotate.direction left ˆradar.switch on ˆradar-power.setting 13)

(<il> ˆblocked <b>)

(<b> ˆforward yes ˆleft no)
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Figure D.1: TankSoar: timing data for all cues.
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Figure D.2: TankSoar: timing data for all cues
(sans map squares, #11-12; y-axis reduced to 5 msec.).
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D.2 Eaters

1. (<cue> ˆsuperstate nil)

2. (<cue> ˆdirections <d1> <d2>)

(<d1> ˆopposite north ˆvalue south)

(<d2> ˆopposite south ˆvalue north)

3. (<cue> ˆlast-direction south)

4. (<cue> ˆio.input-link <il>)

(<il> ˆmy-location.south.east.content normalfood)

5. (<cue> ˆio <io> ˆlast-direction south)

(<io> ˆinput-link <il>

ˆoutput-link <ol>)

(<ol> ˆmove.direction south)

(<il> ˆmy-location <m>)

(<m> ˆeast.content wall ˆwest.content wall)

6. (<cue> ˆio.input-link.my-location <m>)

(<m> ˆeast.content normalfood ˆwest.content bonusfood)

7. (<cue> ˆio.input-link.eater <e>)

(<e> ˆx 14 ˆy 1)
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Figure D.3: Eaters: timing data for all cues.
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Figure D.4: Eaters: timing data for all cues (y-axis reduced to 1 msec.).
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D.3 Infinite Mario

1. (<cue> ˆnum_monsters 2)

2. (<cue> ˆnum_monsters 3)

3. (<cue> ˆmonster <m>)

4. (<cue> ˆmonster <m>)

(<m> ˆtype |Green Koopa| ˆwinged no ˆisthreat yes)

5. (<cue> ˆplatform <p>)

6. (<cue> ˆcoin.disty 0)

7. (<cue> ˆquestion <q>)

(<q> ˆisreachable yes ˆdistx 2)

8. (<cue> ˆio.input-link.block-objects <bo>)

(<bo> ˆblock.type b ˆblock.type |?|)

9. (<cue> ˆio.input-link.mario.type |Small|)

10. (<cue> ˆio.input-link.mario.type |Big|)

11. (<cue> ˆio.input-link.mario.type |Fiery|)

12. (<cue> ˆio.input-link.monsters.monster <m>)

(<m> ˆtype |Goomba| ˆwinged yes ˆvert-direction negative ˆisthreat yes)

13. (<cue> ˆio.input-link.visual-scene.tile-row.tile.type |$|)

14. (<cue> ˆio.output-link <ol> ˆquestion <q>)

(<ol> ˆjump <j> ˆmove.direction right ˆspeed.degree high)

(<q> ˆisreachable yes)
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Figure D.5: Infinite Mario: timing data for all cues.
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Figure D.6: Infinite Mario: timing data for all cues
(sans visual scene, #13; y-axis reduced to 2 msec.).
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D.4 Mobile Robotics

1. (<cue> ˆsuperstate nil)

2. (<cue> ˆio.input-link.area-description <ad>)

(<ad> ˆlight true ˆtype room)

3. (<cue> ˆio.input-link.area-description <ad>)

(<ad> ˆlight true ˆtype room ˆwall <w>)

4. (<cue> ˆio.input-link.self <s>)

5. (<cue> ˆio <io>)

(<io> ˆinput-link.area-description.id 10

ˆoutput-link.set-velocity.angular-velocity 0)

6. (<cue> ˆdescription-area <da>)

(<da> ˆid 5 ˆtype door)
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Figure D.7: Mobile Robotics: timing data for all cues.
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Figure D.8: Mobile Robotics: timing data for all cues
(sans goal management, #6; y-axis reduced to 1 msec.).
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APPENDIX E

Semantic Memory: Negative Cues

We define a negative retrieval cue as a set of symbols corresponding to the set

of augmentations that an element must not contain. In the same fashion that we

mapped the symbolic retrieval cue to the positive tests in ACT-R (see Section 5.3.2),

we can map the negative cue to negative tests.

We have struggled with how to efficiently support negative cues for large seman-

tic stores given the approach outlined in Chapter V. The difficulty arises in large

semantic-memory stores where augmentations are selective: that is, the set of ele-

ments that do not contain an augmentations tends to be relatively large (i.e. |Rc|

is small). As a result, changes to elements (i.e. augmentation addition/removal or

activation event) require updates to supplementary-index element lists that represent

a large portion of the memory, and thus storage scales linearly with the number of

elements, O(|E|).

E.1 Initial Implementation

Our approach to negative cues draws inspiration from production-matching al-

gorithms (Doorenbos , 1995), which suffer from an analogous issue regarding negated
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conditions. At a high level, we make a closed-world assumption with regard to mem-

ory elements, and thus invert positive operations over existing indices to support

negative cues. For this analysis, we define R′c as the set of elements that do not

contain an augmentation c.

First, we add one element list to the supplementary index: a global list of elements,

sorted by bias in descending order. For locally efficient biases (i.e. a constant number

of activations change per time step), maintaining this list is efficient.

Next, during the first phase of query evaluation (query plan; see Section 5.4.3.2),

we derive R′c for negative augmentation c as (|E| − |Rc|): that is, the number of

elements that do not contain the augmentation is equal to the total number of el-

ements minus the number of elements that do contain that augmentation. If no

element contains the negative-cue augmentation (i.e. all elements do not contain

that augmentation), then |R′c| = |E| − |{}| = |E| − 0 = |E|. This process adds only

one additional subtraction calculation, and thus maintains the same efficiency as the

positive cue.

If the most constraining augmentation was from a positive-cue augmentation, the

remainder of query evaluation is straightforward, and we need only invert the result

of candidate verification for negative-cue augmentations. However, if the most con-

straining augmentation is from a negative-cue augmentation, we have two options

to support the remainder of query evaluation. The first option is to use the global

element list as the candidate list w and require additional verification of the first

negative-cue augmentation. This option amounts to a list merge, and scales linearly

with the number of elements, O(|E|); thus a single-augmentation cue would have re-

trieval time that was dependent upon augmentation selectivity, a complexity property

not true of positive cues (see Figure 5.2).

The second option is to initialize w as the head of the list of the first positive-cue

augmentation in Q. Using this option, single-augmentation cues retain selectivity

168



independence, but multi-augmentation cues may require longer search if there is a

significant difference in the constraint imposed by the most constraining positive-cue

augmentation, d, as compared to the negative-cue augmentation, c: |Rd| � |R′c|. We

have not implemented this approach, nor have we studied agents that use negative

cues, and thus we cannot make claims as to the relative frequency of this situation.
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APPENDIX F

Semantic Memory: Relational Schemas

The lists below detail the relational tables for semantic memory (Chapter V). A

“type” of “any” denotes no field type constraint.

F.1 Persistent Variables (vars)

Stores persistent variables as key/value pairs.

Field Type Notes
id integer variable key

value any variable value

F.2 Symbol Hash: Type (symbols type)

Stores hashes from (type) to a single integer. Values are separated into specialized

relations below.

Field Type Notes
id integer symbol hash

sym type integer symbol type
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F.3 Symbol Hash: String (symbols str)

Stores hashes from (string) to a single integer.

Field Type Notes
id integer symbol hash

sym const string symbol value

F.4 Symbol Hash: Integer (symbols int)

Stores hashes from (integer) to a single integer.

Field Type Notes
id integer symbol hash

sym const integer symbol value

F.5 Symbol Hash: Float (symbols float)

Stores hashes from (float) to a single integer.

Field Type Notes
id integer symbol hash

sym const float symbol value
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F.6 Element Registration (lti)

Stores long-term identifier information.

Field Type Notes
id integer unique id

letter integer ASCII value of identifier letter
num integer identifier number

child ct integer augmentation cardinality
act value float bias value
access n integer number of activations
access t integer time step of last activation
access 1 integer time step of first activation

F.7 Element Activation History (history)

Stores a bounded long-term identifier activation history (k=10 in Soar).

Field Type Notes
id integer unique id (refers to id in lti)
t1 integer time step of most recent activation
t2 integer time step of 2nd most recent activation

. . .
tk integer time step of kth most recent activation

F.8 Inverted Table (web)

Stores augmentation information.

Field Type Notes
parent id integer unique id (refers to id in lti)

attrib integer
augmentation attribute (refers to id in sym-
bols type)

val const integer
augmentation value, if constant
(refers to id in symbols type)

val lti integer
augmentation value, if element
(refers to id in lti)

act value float bias value
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F.9 Statistics: Attribute (ct attr)

Stores frequency of augmentation attributes.

Field Type Notes

attr integer
augmentation attribute
(refers to id in symbols type)

ct integer number of occurrences

F.10 Statistics: Attribute-Constant (ct const)

Stores frequency of augmentation attribute-value pairs, where value is a constant.

Field Type Notes

attr integer
augmentation attribute
(refers to id in symbols type)

val const integer
augmentation value
(refers to id in symbols type)

ct integer number of occurrences

F.11 Statistics: Attribute-LTI (ct lti)

Stores frequency of augmentation attribute-value pairs, where value is an LTI.

Field Type Notes

attr integer
augmentation attribute
(refers to id in symbols type)

val lti integer
augmentation value
(refers to id in lti)

ct integer number of occurrences
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APPENDIX G

Semantic Memory: Algorithms

The sections below detail the algorithms for semantic memory (Chapter V).

G.1 Assumptions

I. Semantic memory is represented as a directed graph, where each node has an

associated real-valued bias.

II. Semantic memory is a set: no two edges can have the same triple (parent, label,

value).

III. A retrieval cue is a set of edges (label, value).

IV. Semantic retrieval returns a single object (node and outgoing edges) that con-

tains the retrieval cue and has the highest bias value of all nodes that contain

the cue.
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G.2 Storage

map objects, biases, inverted

real cardinalitythresh ← τ

function BiasViaThresh(real bias, int cardinality)

if (cardinality < cardinalitythresh): return bias

else: return ∞

end function

function AddEdge(node objectid, edge newe)

oldcardinality ← objects[objectId].size()

bias ← biases[objectId]

if (oldcardinality is (cardinalitythresh - 1))

for e in objects[objectId]

RemoveFromSortedList(inverted[e], objectId, bias)

InsertIntoSortedList(inverted[e], objectId, ∞)

end for

end if

objects[objectId].insert(newe)

InsertIntoSortedList(inverted[newe], objectId,

BiasViaThresh(bias, (oldcardinality + 1)))

end function
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function RemoveEdge(node objectid, edge olde)

oldcardinality ← objects[objectId].size()

bias ← biases[objectId]

objects[objectId].remove(olde)

RemoveFromSortedList(inverted[olde], objectId,

BiasViaThresh(bias, oldcardinality))

if (oldcardinality is cardinalitythresh)

for e in objects[objectId]

RemoveFromSortedList(inverted[e], objectId, ∞)

InsertIntoSortedList(inverted[e], objectId, bias)

end for

end if

end function

function UpdateBias(node objectid, real newbias)

oldbias ← biases[objectId]

biases[objectId] ← newbias

if (objects[objectId].size() < cardinalitythresh)

for e in objects[objectId]

RemoveFromSortedList(inverted[e], objectId, oldbias)

InsertIntoSortedList(inverted[e], objectId, newbias)

end for

end if

end function

176



function StoreObject(node objectid, set edges, real newbias)

if (not objects.contains(objectid))

objects[objectId] ← {}

biases[objectId] ← 0

end if

for e in objects[objectId]

RemoveEdge(objectId, e)

end for

UpdateBias(objectId, newbias)

for e in edges

AddEdge(objectId, e)

end for

end function

G.2.1 Notes

Storage and bias-value updates are done incrementally. When an object’s edge

cardinality changes with respect to the threshold, we shift between sort-on-query and

static-sort for that object.
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G.3 Cue Matching

function CueMatch(set cue)

list queryplan, highcardinality

edge mostconstraining

node ret ← null

for e in cue:

InsertIntoSortedList(queryplan, e, inverted[e].size())

mostconstraining ← queryplan.head

queryplan.removeHead()

for cand in inverted[mostconstraining]

if (objects[cand].size() < cardinalitythresh): break

else: InsertIntoSortedList(highcardinality, cand, biases[cand])

end for

nextCand ← IncrementalMerge(inverted[mostconstraining], highcardinality)

bool goodcand ← true

for e in queryplan

if (not objects[nextCand].contains(e)): goodcand ← false

end for

if (goodcand is true): return goodcand

ContinueMerge

failure

end function
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APPENDIX H

Semantic Memory: Augmentation Cardinality

CDFs for SUMO, OpenCyc, and WordNet

The figures in this appendix plot the cumulative proportion of elements in com-

mon knowledge bases versus augmentation cardinality (i.e. number of features per

element). We bounded the x-axis of each chart at a value of 50; however, maximum

values were much larger (SUMO=10,302; OpenCyc=279; and WordNet=679). This

data supports the assumption of small element cardinality.
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Figure H.1: CDF of augmentation cardinality in SUMO (Niles and Pease, 2001).
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Figure H.2: CDF of augmentation cardinality in OpenCyc, a subset of Cyc (Lenat ,
1995).
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Figure H.3: CDF of augmentation cardinality in WordNet (Miller , 1995).
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APPENDIX I

Forgetting: Algorithms

The sections below detail the forgetting algorithms (Chapter VI).

I.1 Assumptions

I. Memory comprises a set of symbolic elements.

II. Time increments monotonically in discrete time steps.

III. Each element has a constant-sized (c) history of prior access {(time of access,

number of accesses at that time)}.

IV. Base-level activation has a constant decay parameter, d, and a constant forget-

ting threshold, Θ.
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I.2 Element Activation

map histories

map decay

int maxwindow ← c

real minactivation ← Θ

real decay ← d

decay[0] ← {}

function DecayApproximation(access a, time t)

ret ← ceiling( exp( [minactivation - ln(a.second)] / -decay ) )

timediff ← (t - a.first)

if (timediff > ret): return (timediff - ret)

else: return 0

end function

function PredictDecay(element m, time t, bool newaccess)

time td ← t

if (newaccess is true):

for a in histories[m].window:

td ← (td + DecayApproximation(a, t))

if (td is t): return BinaryParameterSearch(histories[m], t)

else: return td

end function
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function ActivateMemory(element m, time t, int n)

if (not histories.containsKey(m))

histories[m] ← {window={}, firstt=t, total=0, decaykey=0}

decay[0].insert(m)

end if

histories[m].window.append(<t, n>)

if (histories[m].window.size() > maxwindow):

histories[m].window.remove(histories[m].window.head)

histories[m].total ← (histories[m].total + n)

decay[histories[m].decaykey].remove(m)

histories[m].decaykey = PredictDecay(m, t, true)

decay[histories[m].decaykey].insert(m)

end function

I.2.1 Notes

The binary parameter search seeks the time at which base-level activation (via a

tail approximation (Petrov , 2006), which incorporates total number of accesses, total,

and time of first access, firstt) falls below threshold (minactivation).
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I.3 Element Forgetting

function GetDecayedElements(time t)

if (not decay.containsKey(t)): return {}

for m in decay[t]

if (PetrovBaseLevelActivation(histories[m], t) ≥ minactivation)

decay[t].remove(m)

histories[m].decaykey = PredictDecay(m, t, false)

decay[histories[m].decaykey].insert(m)

end if

end for

return decay[t]

end function

I.3.1 Notes

The tail approximation (Petrov , 2006) incorporates total number of accesses

(total) and time of first access (firstt).
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