

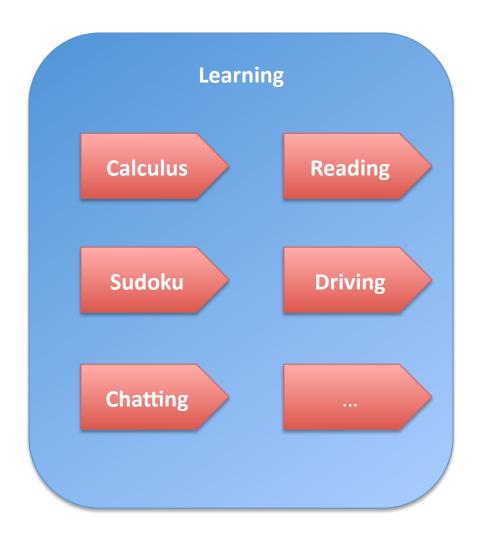
Long-Term Declarative Memory for Generally Intelligent Agents

Thesis Proposal

Nate Derbinsky

Generally Intelligent Agents

- Autonomous
- Continually embedded in a diverse, dynamic environment
- Long-living
 - Months, Years
- Multiple, complex tasks



Long-Term Memory Systems

Class of mechanism to cope with dynamic, partially-observable environment

- Encodes experience
- Stores internally
- Supports retrieval

Human memory

- Biased, error-prone
- Continually able to encode new experience
- Lends to improved performance with greater task experience

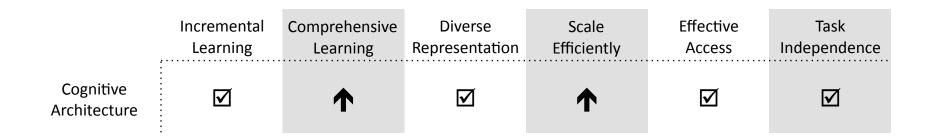
Long-Term Memory (LTM) for Artificial General Intelligence (AGI)

AGI Constraints -> LTM Requirements [Laird & Wray, 2010]

- No concurrent solution
- Insufficient comprehensiveness of learning
- Opportunities for cross-fertilization

	Incremental Learning	Comprehensive Learning	Diverse Representation	Scale Efficiently	Effective Access	Task Independence
Cognitive Modeling/ Architecture	Ø		7			Ø
Case-Based Reasoning						
Information Retrieval/ Databases				\square		
Knowledge Representation Reasoning						Ø

Our Proposal



Explore...

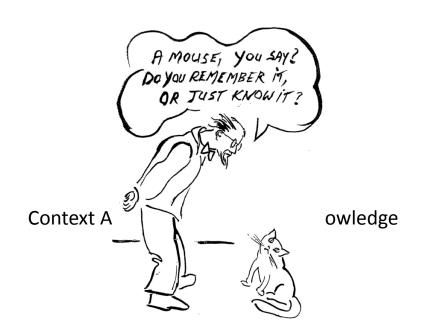
- 2 long-term declarative memory systems
- 2 research questions
 - Encoding/Storage, Retrieval

Proposal: Memory Systems

Psychological and computational evidence for the functional necessity of dissociated memory systems [Derbinsky & Laird, 2010]

"Know"

Semantic



"Remember"

Episodic

Proposal: Research Questions

Encoding/Storage

What agent experience should a task-independent memory system *encode* and *store*?

Retrieval

How can a task-independent memory system retrieve the most useful knowledge?

Outline

Introduction

Prior Work

- Episodic
- Semantic

Future Work

- Evaluation Strategy
- Proposed Extensions
- Timeline

Prior Work

Focus

Understand the <u>efficiency</u> challenges in extending the Soar cognitive architecture with <u>basic</u> episodic and semantic memory functionality

Requirements

- Task-independence
- Expressive representation
- Scales to large knowledge
 - Boundedness, 50-100ms

Outline

- Human "definition"
- Functional benefits
- Related work
- Architectural integration
- Contributions
- Scaling evaluation

Episodic Memory in Humans

Long-term, contextualized store of specific events [Tulving, 1983]

What you "remember" vs. what you "know"

Properties

- Autobiographical
- Task-independent
- Automatic
- Autonoetic
- Temporally indexed

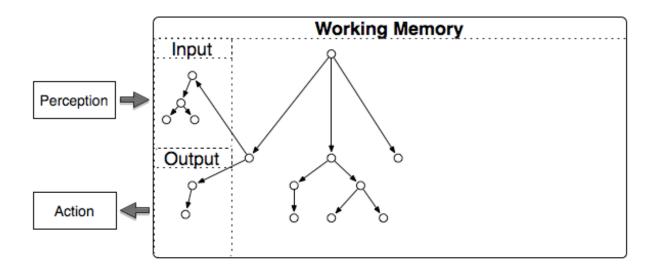
EpMem: Functional Benefits

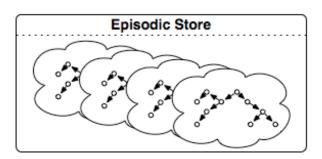
Supports enhanced situational awareness, reasoning, and learning via numerous general capabilities

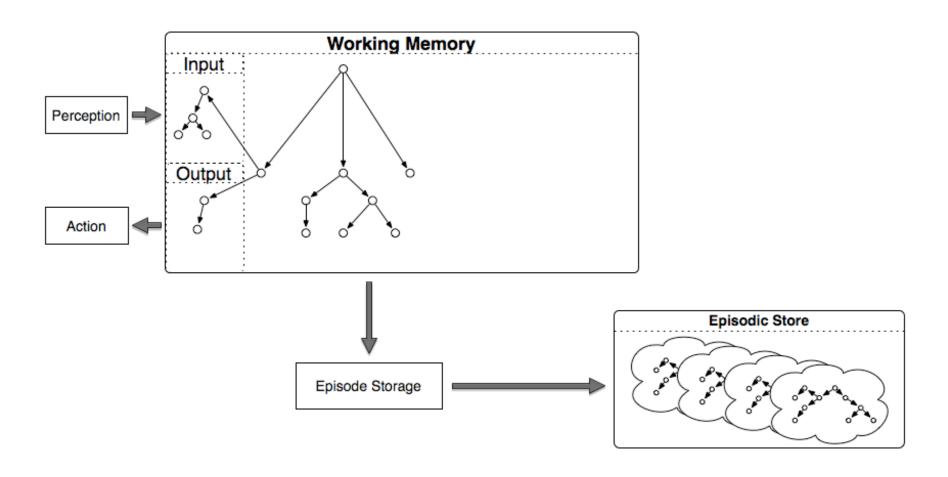
Virtual Sensing [Nuxoll & Laird, 2007]

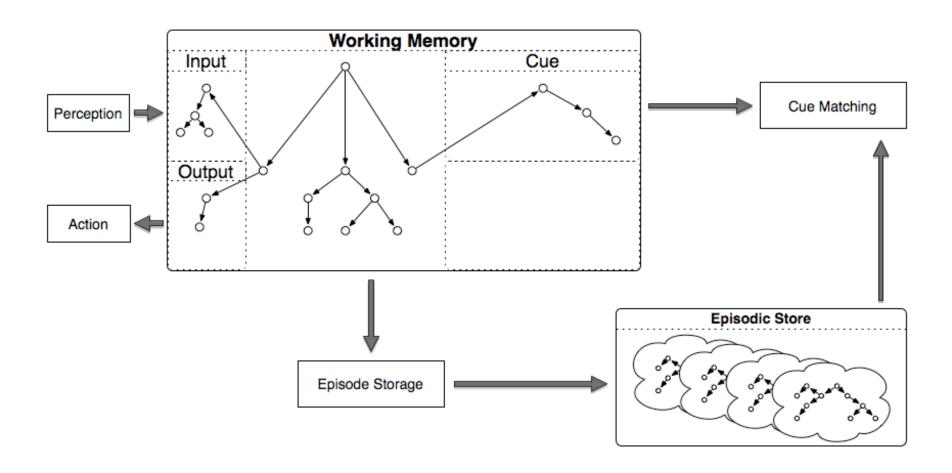
Expands agent sensing beyond immediate perception via access to details of past situations

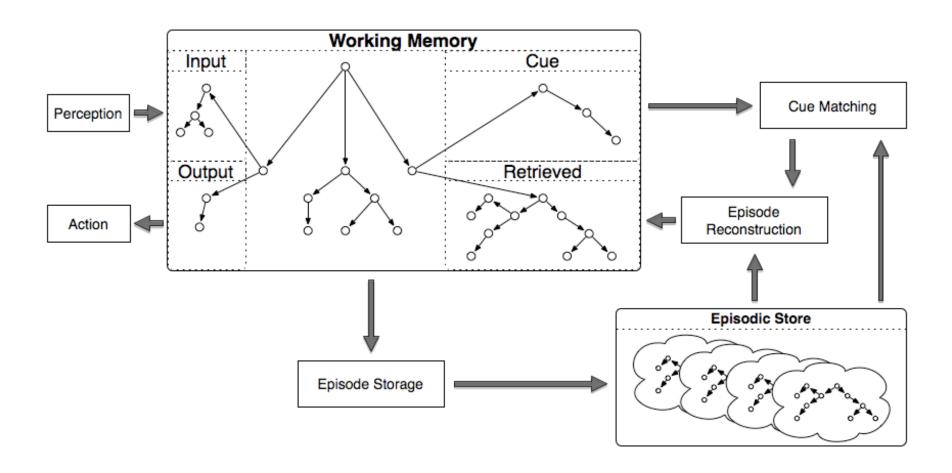
Action Modeling [Laird et al., 2010; Xu & Laird, 2010] Informs predictions about the result of actions in present or future situations based upon prior experience











EpMem: Contributions

Developed novel data structures and algorithms to support basic functionality in graph-based, task-independent episodic memory systems [Derbinsky & Laird, 2009]

Faithful storage and reconstruction of episodes

Exploited structural re-use & temporal contiguity

Cue matching

- Qualitative nearest-neighbor, biased by recency
- Two-stage matching strategy

EpMem: Scaling Evaluation

Stressful domain

- > 2500 features
- ~ 70-90% inputs change (30-100)

1 million episodes (~hours-days of real-time)

- 10 trials
- Commodity hardware

Storage	Cue Matching*	Reconstruction**	Total
2.68ms 625-1620MB (0.64-1.66KB/ep)	57.6ms	22.65ms	82.93ms

* 15 cues

** 50 random episodes

Semantic Memory in Humans

Long-term store of facts independent of original context

What you "know" vs. what you "remember"

Computational models account for human performance in numerous activities

Categorization, task switching, linguistics, ...

SMem: Functional Benefits

Supports enhanced situational awareness, reasoning, and learning via access to large stores of general knowledge about the world

Lexical	Word meanings, synonyms,		
Mathematical Arithmetic facts, function/relation definitions,			
Geographical	Capitals, bodies of water,		
Historical	Wars, discoveries, reigns of power,		
Ontological	Biology, technology, art,		
Commonsensical	"Tables typically have four legs"		

SMem: Large Stores

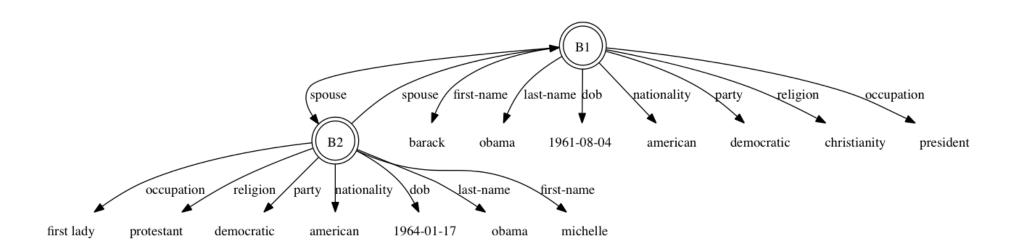
Complex tasks require access to large stores of knowledge

SUMO	WordNet	Сус
Ontology	Lexicon	"Common Sense"
4.5K classes 250K facts	212K word senses 820K facts	500K concepts 5M facts

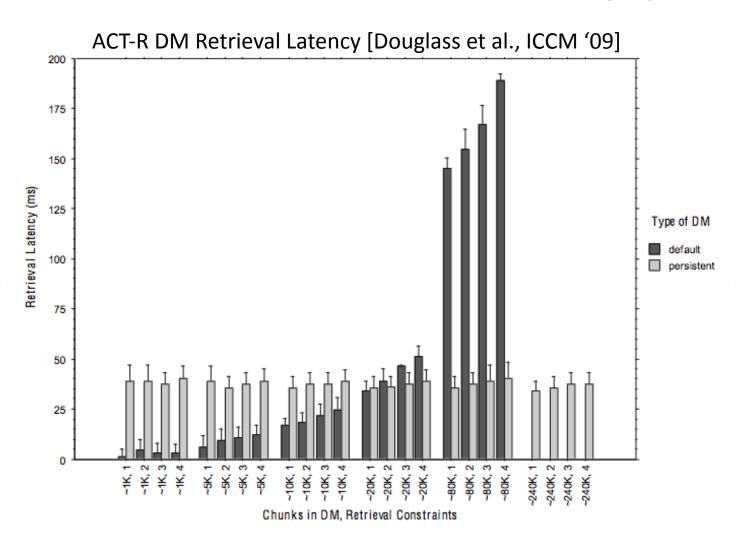
Hierarchical store of concepts and associated features

Supports...

- Associative cue: given feature subset, retrieve node
- Concept expansion: given node, retrieve features



SMem: Related Work (1)



SMem: Related Work (2)

	Douglass et al., '09	
Problem Formulation	Empirical	
Methods & Analysis	System Dependent	
Implementation	PostgreSQL+ACT-R	
Matching	Symbolic*	
Evaluation	WN-Lexical*, 240K chunks	

SMem: Contributions

	Douglass et al., '09	Derbinsky et al., '10
Problem Formulation	Empirical	Empirical Formal
Methods & Analysis	System Dependent	System Independent
Implementation	PostgreSQL+ACT-R	SQLite+Soar
Matching	Symbolic*	Symbolic
Evaluation	WN-Lexical*, 240K chunks	WN-Lexical, 820K chunks Synthetic, 3.6M chunks

100x faster retrievals on a comparable set of cues scaling to a 3x larger semantic store

Outline

Introduction

Prior Work

- Episodic
- Semantic

Future Work

- Evaluation Strategy
- Proposed Extensions
- Timeline

Future Work

Prior work focused on understand the <u>efficiency</u> challenges in extending the Soar cognitive architecture with <u>basic</u> episodic and semantic memory functionality

We now propose to extend functionality, as guided by our core research questions, while maintaining efficiency

Q1: Encoding/Storage

What aspects of agent experience should a task-independent memory system *encode* and *store* ...

such as to functionally support performance across a variety of tasks...

while maintaining reactivity in complex, dynamic environments?

Q2: Retrieval

Max left his iPhone at the **bank**

What task-independent regularities of agent experience...

can efficiently supplement impoverished cues...

to improve the expected utility of *retrieved* memories?

Future Work: Extensions

	Episodic	Semantic
Q1: Encoding/Storage	X1	Х3
Q2: Retrieval	X2	X4

Evaluation

No accepted benchmarks or metrics for comparing task-independent memory systems for generally intelligent agents

Strategy

- Focused computational benchmarks
- Apposite model comparisons
- Thematic complex domain: cognitive robotics

Metrics

- Computational
 - Space, time
 - Analytical, empirical
 - Maximum, average
- Task Performance
 - Quality
 - Time-to-completion

X1: Episodic Encoding

Problem

Autonomous agents are exposed to large amounts of information

- Experiential
- Conceptual

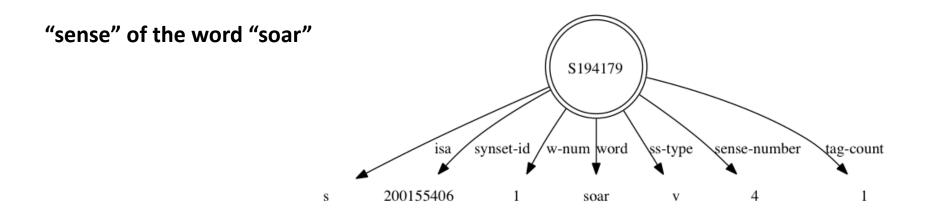
How can episodic memory improve space requirements over long lifetimes while maintaining useful retrievals?

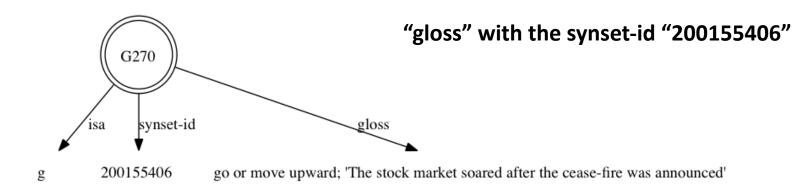
Approach

Explore tradeoffs in policy of not encoding in episodic memory the substructure and relations of semantic concepts

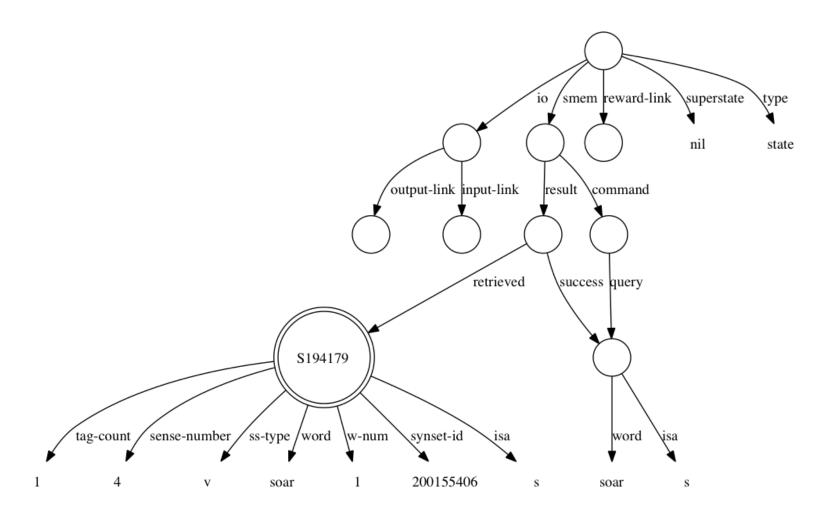
- Reduces storage
- Sacrifices fidelity
- May require semantic retrieval to reconstruct episodes

Example Semantic Knowledge: "soar"



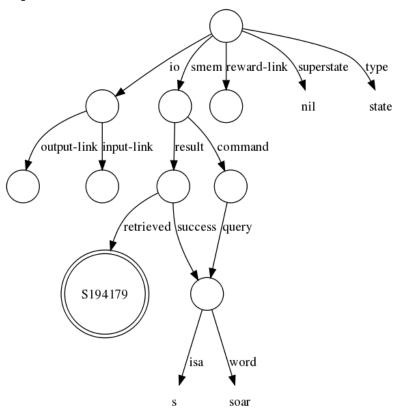


Example Episode

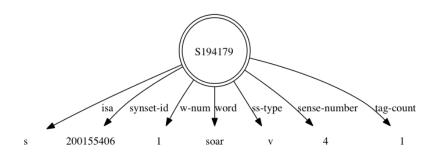


Pruned Episodic Encoding

Episodic



Semantic



X2: Episodic Retrieval

Problem

Current match metrics

- Cue element cardinality
- Recency

Given an under-specified query, can additional sources of knowledge improve retrieval quality while scaling to large bodies of knowledge?

Approach

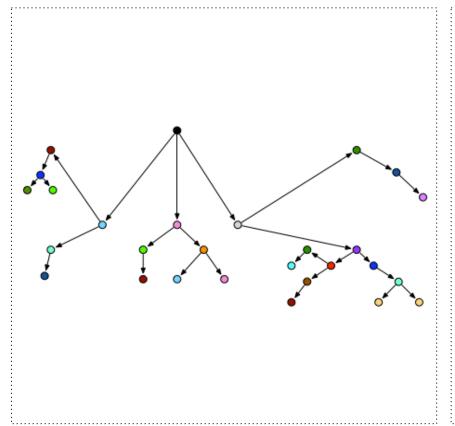
Explore methods of *efficiently* incorporating bias at two granularities

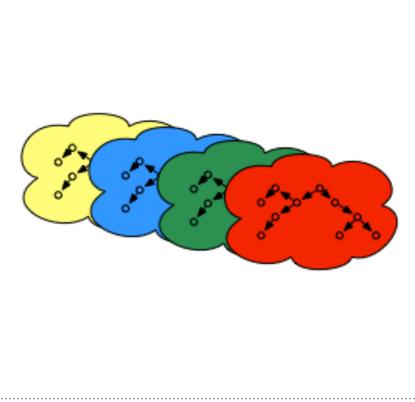
- Episode
- Element

Episodic Bias Granularity

Element

Episode





X3: Semantic Encoding

Problem

Given conceptual information about the world, semantic retrievals support numerous cognitive functions

Linguistics, communication, inference, ...

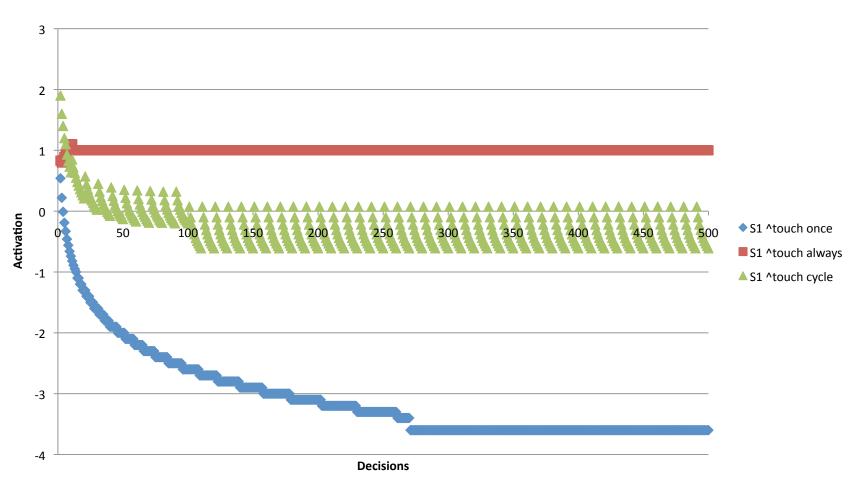
How should a generally intelligent agent incrementally acquire this knowledge over a long lifetime?

Approach

Evaluate a small space of automatic encoding policies, spanning two pruning heuristics

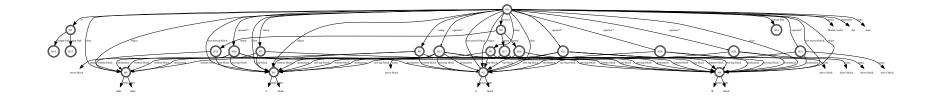
- Situational focus
- Structural stability

Situational Focus: Working Memory Activation

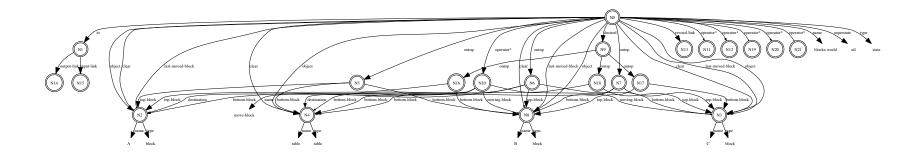


October 26, 2010

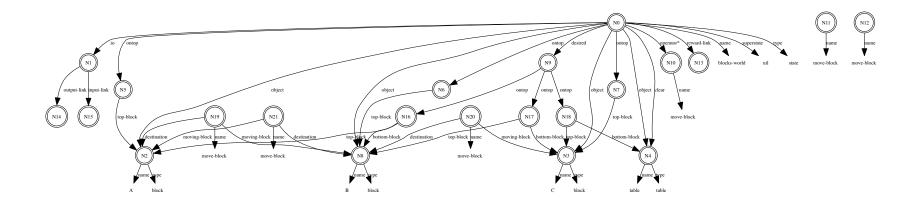
Structural Stability (1)



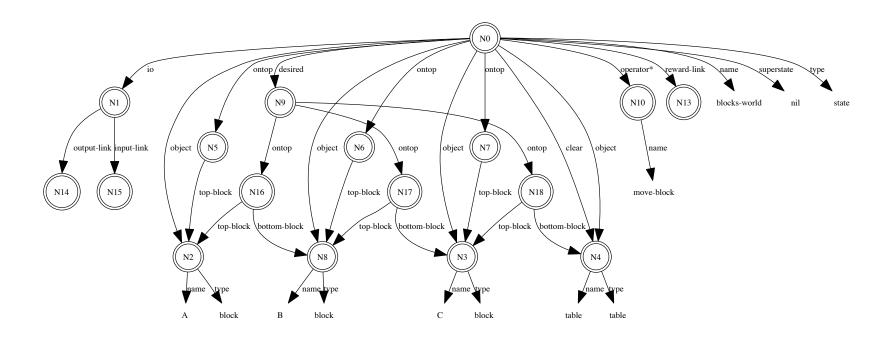
Structural Stability (2)



Structural Stability (3)



Structural Stability (4)



X4: Semantic Retrieval

Problem

For underspecified cues, rational analysis (Anderson, 1990) suggests semantic memory must be sensitive to statistical environmental regularities

- Retrieval history
- Context

Current models cannot scale to even moderate sized knowledge stores

Approach

Implement and evaluate parallel and approximate forms of activation bias

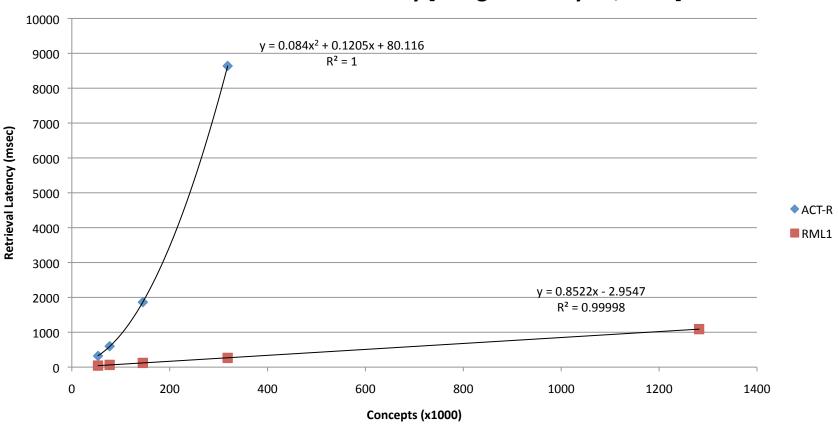
Evaluate Word Sense
Disambiguation model
degradation as focused task

Semantic Bias

Max left his iPhone at the dock near the **bank**

Semantic Bias Latency

ACT-R DM Retrieval Latency [Douglass & Myers, 2010]



Future Work: Expected Contributions

	Incremental	Comprehensive	Diverse	Scale	Effective	Task
	Learning	Learning	Representation	Efficiently	Access	Independence
Cognitive Architecture	Ø	^		^		\square

Mechanism space

- Implemented software
- Data structures, algorithms
- Computational analysis

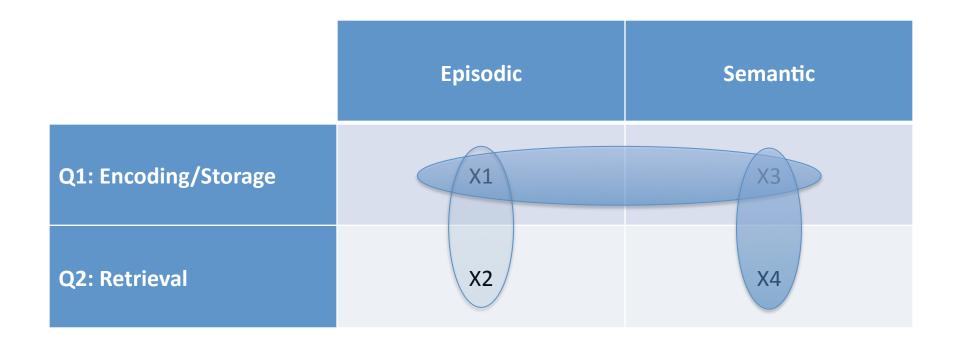
Functional agent demonstrations

- High-level cognitive capabilities
- Useful across numerous tasks, long lifetimes

Modeling constraint

AGI Constraints -> LTM Requirements -> Scientific Exploration

Future Work: Interactions



Future Work: Timeline

October 2010 – January 2011

Semantic Retrieval (X4)

January 2011 – April 2011

Semantic Encoding (X3)

April 2011 – September 2011

- Episodic Encoding (X1)
- Episodic Retrieval (X2)

October 2011 – March 2012

Thesis data analysis, writing, and defense

October 26, 2010

Questions?

THANK YOU!