Long-Term Declarative Memory for Generally Intelligent Agents
Thesis Proposal

Nate Derbinsky



Table of Contents

TADIE Of CONTENES ...uieueerieureeeesreeseerseesresseessessees s s ee s s s sse bR s s s sseE e R R R R s s b s 2
N 000 7o LT 0 (o) PP 4
2. Memory System REQUITEIMENLS ..o sssssss s sssessesssssssss s sssssssssssessesns 9
2.1 Environment, Task, and Agent CharacteriStiCs ......emeeneseessessessesseessesseessessesseenns 9
2.2 Requirements fOr MEMOTY SYSTEIMNS ....c.vveueerrmirmsensseessessssssesssesssesssssssssssssssssssssssssssssssssssssessssesas 10
RS 2T U= o 3 1= o O PO 13
3. RESEATCH APPTIOACH ...ttt 15
3.1 Research MethodolOogy ... ssssssssssssssssssss s sssssssesssessssesas 15
3.2 RESEATCH ATCRITECTUTE «..oveeeeeeeeeeesrereessessee s ses s sss s s s s 19
4. Prior Work: EPISOAIC MEIMOTY ....vurierreeeeeneesesressesssssssssssssssssessesssssssssssssssssssssssesssssssssssssssssssssssssssessesnes 26
0 O (010 L= 1 [ ) o O 26
4.2 FUNCtional SPeCifiCation ... sssssssssssssssssssssssssssssssssssssssssesns 27
4.3 RELALEA WOTK .ottt sesaessssse s s s bbb bbb 28
4.4 Efficient IMpPlemMentation ... eeeeeeeseesseesessesssesseessessesssesssessssssesssssssssssssssssesssssssssssssasssssssssssssnes 29
T D 1L T2 ) o PP 32
5. Prior Work: SEmMantic MEMOTIY .......remesessessessssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssens 33
ST L (0] 04 U (0 ) o TP 33
ST/ 100 o Totu U] o E= B 01T U Uor: U (o) s 00 TP 33
5.3 Efficient IMplementation. ... eeeeeseeseeseesssesessessessesssessssssesssssssssssssssssssssssssssssssssssessesssesans 34
RT3 A=Y LD U (0 ) o LT 35
6. Prior WOTK: ANALYSIS .o sesssesssssssesssessssss st ssssssssssesssesssessssssas 36
6.1 ImProving FUNCHIONALILY ... ses s sees s s sssessesssessesssesans 36
6.2 Combating Computational INtractability ... 37
7. FULUTE WOTKue ettt s s s s 40
W B AT 2 LR F: U () 4 U] 0 - L =Y PP 40
7.2 FUNCHIONA] EXEENSIONS . ...ucurieeeerrierctseiesesessseessssesssssssssssssssss s st st ssssssssans 43
7.3 THMIELIIIE .ottt ettt ese et s s s s s s R R 49
Appendix A. MemoOry MOdEel SPACE ... ssessssssssssssssssssssssssssssssesnens 51
)0 0 0 (o0 T b3 ON 51
Y 1) ¢ V=TT 51
G T8 2 U=1 0 0 =) | PP 51
Appendix B. Detailed Episodic Memory Evaluation......neneeeseeseesesseesesseessesseesseenns 53
B.1 Evaluation DOmMaiN ... eeeeesereessessesseessessessesssessessssssssssesssessesssessesssesssesssssssssssssssssessssssessessesass 53
B.2 Cue Matching EvalUation ... esesssesssssssssessssssssssssssssssssssssssssssssssssssssssssesas 54
B.3 Episode Reconstruction EValuation........eeceeenseseesessesssssesssessesssssssssesssesssessssssessesssssnns 55
Appendix C. Semantic Memory Retrieval FOormulation ... 57
C.1 Basic Problem FOrmuUIAtion .....o.eereeeesseseeseesssssssssssessesssssssssssssssssssssssssssssssssssssssssssssssans 57
C.2 Mapping t0 ACT-R DM ...reseeeereesesseessessessesssessesssssssssssssessessssssssssssssssssssssssssssssssessssssessessesans 57
C.3 Extension: ACtIVAtiON BIas .....oiininesssssssisssesssssssssss s ssssssessssssssssssssssssssssssssens 58
Appendix D. Supporting Basic Semantic Memory Retrievals........neneenseneenseeseesseenn. 59
D.1 POSitive CUE COMPONENLT ....ceeeeeriereeesessessesssessessesssssssessesssessesssssssessesssssssessessssssesssssssssssssssssssssesssnses 59
D.2 Negative Cue COMPONENT ... sssssssssssssssssssssssssssssssssss s sssssssssssssssssssass 60
Appendix E. Supporting Efficient ACtivation Bias ......ceerneneeneneesesseeseesessessessesssesssessesnns 61

27 September 2010 2



E.1 Efficient Activation Bias UPdates.......iiiiessssssssssssssssssssssssssssssssssssssssssssssssans 61

E.2 EffiCIENT SUPPOTT cooreeeeeeereeeeeseeseteesseseessessessesssesesssss s s s sss s s s s ss s 61
Appendix F. Detailed Semantic Memory EvValuation........ssssessssssssssssssssssens 64
F.L WOTANEL..ceeeeeeceeereeeesstes st s s sses s ss s bbb 64
F.2 SYNTNETIC DAta.. it sesses s s es s s bbb 64
S (=) (=) L] 67

27 September 2010 3



1. Introduction

At the conclusion of the summer of 1955, John McCarthy, writing a proposal for a
Dartmouth summer research project, coined Artificial Intelligence as the study of making
machines that “solve kinds of problems now reserved for humans” (McCarthy et al., 1955;
Newell, 1991). Over 50 years later, Al has flourished as a research community and many
advances have been made, but humans remain sui generis - the only exemplars of
generally intelligent, long-lived, learning agents: contrasting an ecosystem of task-specific,
short-lived, brittle computer systems (McCarthy, 2007), most persons survive for decades,
autonomously contending with, and continually improving performance on, multiple,
complex tasks for many hours every day.

Memory systems compose one class of mechanism the human cognitive architecture
employs to contend with a dynamic environment in which, amongst other challenges (Laird
& Wray, 2010), an individual can only perceive a small part of the complete state of the
world at any point in time. A memory system captures, or encodes, some aspect of
experience; stores this information as internal knowledge, potentially changing it over time;
and provides for efficient retrieval at a later time. Precise and timely knowledge retrievals
from this internal, experiential store, when combined with other cognitive mechanisms and
processes, functionally serve to robustly enhance a human’s situational awareness and
decision-making on a variety of tasks, despite a complex, dynamic world.

While human memory is demonstrably not immune to error or bias (Miller, 1956; Owens &
Bower, 1979; Schacter, 1999), it inspires Al research by concurrently exhibiting two
important functional characteristics. First, human memory doesn’t seem to run out of
space, despite being bombarded with dense and varying torrents of information, including
data that is autobiographical (Tulving, 1983; Laird & Derbinsky, 2009), lexical (Miller,
1995), conceptual (Kolodner, 1983a; Medin & Smith, 1984; Davidsson, 1995; Niles & Pease,
2001); and commonsensical (Lenat, 1995). Furthermore, as human experts amass these
vast stores of knowledge, their memory capability does not suffer; rather, they improve
performance on domain tasks (Smith et al.,, 1978), in contrast to many computer models
and systems (Minton, 1990; Tambe et al., 1990; Smyth & Cunningham, 1996; Douglass et
al,, 2009). In summary, despite a deluge of experience, humans, unlike many artificial
agents, do not drown; they push forward, bringing to bear their knowledge and reasoning
abilities to flourish in challenging and novel situations and tasks.

A review of prior psychological and computational work (Derbinsky & Laird, 2010)
suggests that this resilient behavior is due in part to the multiple, dissociated human
memory systems: these studies cite the potential for significant functional and
computational detriment when utilizing a single memory mechanism for different types of
learning tasks. But while research and development of cognitive architectures typically
reflects this dissociation strategy (Langley et al., 2009), significant additional work must
still be done to understand the role long-term memory systems play in a general cognitive
architecture: specifically, and concurrently, (Q1) what functionality must memory systems
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Table 1. The Degree to which Related Fields of Research Satisfy Requirements of Memory Systems for

Generally Intelligent Agents
REQUIREMENTS

R1 R2 R3 R4 R5 R6
Incremental Comprehensive Diverse Scale Effective Task
Learning Learning Representation Efficiently Access Independence
Cognitive Modeling/ W, —
Architecture IZI O IZ
Case-Based ",
Reasoning D D D D
Information Retrieval/ — ",
Databases O O M
Knowledge I~
Representation D D M

support to achieve human-level intelligence? and (Q2) how can this functionality be
efficiently supported in long-living agents?

Table 1 summarizes the degree to which fields of related research contribute to these
questions. The requirements (R1-R6) are derived from characteristics of the structure of
generally intelligent agents, the tasks with which they contend, and the environment in
which they are embedded, borrowing heavily from Laird & Wray (2010), and they attempt
to capture, along multiple dimensions, critical nuances of the terms functionality and
efficiency. These requirements are then cross-referenced with trends and achievements in
related fields of research, wherein an empty cell signifies little-to-no contribution, an open
box () signifies partial contribution, and a checked box (M) symbolizes significant
benefaction. We develop this chart in greater detail later (Section 2), but before that
presentation we can glean three important points. First, the requirements of memory
systems imposed by the context of generally intelligent agents are numerous, challenging,
and antithetical in concurrence, such as scaling efficiently (R4), in a task independent
fashion (R6), given a diversely represented (R3), comprehensive knowledge store (R3).
Second, while it is unsurprising that no individual field can lay claim to concurrently
satisfying all of these requirements, it is significant to note, however, that no field fully
understands R2, the comprehensive spectrum of diverse learning mechanisms that
memory systems must support to achieve human-level intelligence, which relates strongly
to question Q2 above. Finally, there appear to be opportunities for cross-fertilization to
more completely satisfy requirements within a single realm. For instance, we have
preliminary evidence (Derbinsky & Laird, 2009; Derbinsky et al., 2010), discussed in
greater detail later (Sections 5 and 6), that database and information retrieval techniques
are highly effective in efficiently (R4) supporting task-independent (R6) memory systems
within a general cognitive architecture, relating to question Q1.

To incrementally contribute to the cognitive architecture literature in memory systems, we
propose to improve the functional (R2) and computational (R4) understanding of two
human-inspired, well-studied, long-term declarative memory systems, semantic and
episodic (Tulving, 1983), which straddle two extremes of associating context with stored
experience. Psychological literature describes semantic memories as including general
facts that the agent “knows,” independent of the context in which they were originally
learned, which can be applied to improve understanding and task performance in
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numerous, potentially unrelated situations. In contrast, episodic memories reflect
autobiographical, contextualized agent experience that allows an agent to “remember” its
own past, such as the consequences of an action in a similar situation and using that
knowledge to decide how to act presently.

Discussed in greater detail later (see Section 7), we plan to explore extensions to the
episodic and semantic memory modules of the Soar cognitive architecture, which will
enhance the functionality of encoding, storage, and retrieval of memories, while efficiently
scaling to large stores of knowledge over long agent lifetimes. These extensions begin to
address the following two fundamental research questions, which concurrently contribute
to our requirements (R2, R4) across the full spectrum of memory operations (encoding,
storage, and retrieval):

What aspects of agent experience should a task-independent memory
mechanism encode and store such as to functionally support performance across
a variety of tasks while maintaining reactivity to complex, dynamic
environments?

What task-independent regularities of agent experience can efficiently
supplement incomplete task-dependent knowledge to improve the expected
utility of retrieved memories in response to impoverished cues?

In context of episodic memory, we plan to explore the following approaches to these
questions, respectively:

X1. Semantic Pruning of Episodic Encoding
We plan to explore the degree to which we can reduce long-term episodic
storage requirements (R4) in a task-independent fashion (R6) by not
encoding historical features and relations of long-term semantic concepts
(R2) without significantly degrading the efficacy (R5) of episodic retrievals.

X2. Efficient Episodic Activation Bias
We plan to explore task-independent (R6), efficient (R4) methods of
incrementally (R1) incorporating varying levels of regularity of agent
experience (R2), such as episode-level appraisals and element-level
activation, as forms of bias within the retrieval algorithm to improve quality
in cases of under-specified cues (R5).

And with semantic memory, we will explore the following approaches, respectively:

X3. Automatic Semantic Encoding
We plan to explore the degree to which we can reduce long-term semantic
storage requirements (R4) by incrementally (R1) incorporating different
agent and environmental regularities (R2) as sources of task-independent
(R6) knowledge to inform automatic encoding without significantly
degrading the efficacy (R5) of semantic retrievals.
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X4. Efficient Semantic Activation Bias
We plan to explore task-independent (R6), efficient (R4) methods of
incrementally (R1) incorporating regularities of semantic memory requests
(R2), such as retrieval history and context, as forms of bias within the
retrieval algorithm to improve quality in cases of under-specified cues (R5).

Table 2 summarizes these extensions in context of the requirements (R1-R6) in Table 1 and
memory system organization described above (episodic vs. semantic; encoding/storage vs.
retrieval). A dot (*) signifies maintaining satisfaction of a requirement, while an upward
arrow (/N) indicates that work on the extension will improve satisfaction of the
requirement. Note that R3, supporting diverse knowledge representations, is satisfied by
virtue of extending work on the expressive, relational, symbolic representation in the Soar
cognitive architecture, as discussed in greater detail later (Section 3).

Table 2: How Proposed Extensions Relate to Memory System Organization and Requirements
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In the remainder of this document, we precisely describe how we plan to explore these
extensions in a generally intelligent, artificial agent’s dynamic, long-term declarative
memory systems as it experiences, and remains reactive to, its environment and contends
with multiple, complex tasks. To begin, in Section 2 we more thoroughly discuss artificial
memory systems in context of generally intelligent agents, including greater detail about
the functional requirements that fall out of the characteristics of environment and task
confronting long-living, autonomous, learning agents. Given this foundation, we proceed in
Section 3 to frame our proposed approach, focusing on research methodology. We then
review our prior work, in which we focused on understanding the computational
challenges involved in extending a general cognitive architecture with basic, task-
independent episodic (Section 4) and semantic (Section 5) functionality that scales with
large bodies of knowledge. In Section 6, we assess our progress and conjointly analyze our
prior work in preparation for Section 7, in which we formulate our plan for future research,
including proposed functional extensions, evaluation, and timeline.

27 September 2010 8



2. Memory System Requirements

In this section, we dissect memory systems in context of generally intelligent agents. We
begin by characterizing this class of agents, enumerating properties of their structure, the
types of task with which they contend, and the environment in which they are embedded,
with a focus on how these characteristics relate to and constrain their memory
mechanisms. Given this breakdown, we set forth functional requirements on artificial
memory mechanisms and discuss related research fields and the degree to which their
efforts apply to and satisfy these requirements.

2.1 Environment, Task, and Agent Characteristics

Here we enumerate properties of environment, tasks, and agents that lead to requirements
for memory mechanisms that support generally intelligent, autonomous agents. This
breakdown draws heavily on work by Laird and Wray (2010), in which they develop
requirements for cognitive architecture, but specializes the discussion with respect to
memory systems embedded within these architectures.

C1. Environment is Diverse with Complex and Interacting Objects
i. The agent can usefully interpret parts of the environment as if it consists of
independent objects.
ii. There are many objects.
iii. Objects have numerous, diverse properties.
iv. Some objects share similarities with other objects.

C2. Environment is Dynamic
i. The environment changes independently of the agent.
ii. The environment may change rapidly, relative to agent decision-making.
iii. Environmental dynamics are complex: the agent cannot always accurately predict
future states in detail.
iv. Some object properties (C1) change as a consequence of environment dynamics.

C3. Task-Relevant Regularities Exist at Multiple Time Scales
i. Environmental dynamics (C2) are not arbitrary: interactions are governed by
physical laws that are constant, often predictable, and frequently lead to recurrence
and regularity that impact the agent’s ability to achieve goals.
ii. Regularities in environmental dynamics exist at multiple time scales.
iii. Regularities in environmental dynamics lead to regularities in intra- and inter-
object property changes (C1, C2).

C4. Tasks can be Complex, Diverse, and Novel
i. Tasks properties and goals are complex.
ii. The agent will contend with numerous tasks during its existence.
iii. The agent will contend with tasks with novel properties and goals.
iv. Tasks vary in the time scales required to achieve them: some are close to the
timescale of dynamics in the environment (C2) while others require extended
behavior.
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C5. Agent/Environment/Task Interactions are Complex and Limited

L.

ii.

The environment is partially observable: it is impossible for the agents to perceive
the entire state of the world.

Agent sensors are noisy and may be occluded by objects (C1) and environmental
dynamics (C2), making agent perception incomplete and uncertain.

C6. Agent Computational Resources are Limited

I

ii.

The agent has physical limits on its computational resources relative to dynamics of
the environment (C2).

Agent interactions (C5) within the complex (C1), dynamic (C2) environment and
with complex tasks (C4), given bounded computational resources, make perfect
rationality impossible.

C7. Agent Existence is Long-Term and Continual

L.

ii.

Agent existence is long-term relative to primitive interactions with the environment
(C2,C5).
For the duration of its existence, the agent is always present in its environment.

2.2 Requirements for Memory Systems

Based upon the characteristics above, we derive the following requirements to constrain
implementations of memory systems for generally intelligent agents. Once again, these
borrow heavily from the cognitive architecture requirements of Laird and Wray (2010),
but are specialized for memory systems.

R1. Support Incremental, Online Learning
Given that the agent...

i

ii.

is continually (C7) embedded within an environment that changes quickly and in
complex ways (C2); and

must assimilate and exploit environmental regularities (C3), when and as they
become apparent, to effectively contend with diverse ongoing and future tasks (C4);

the agent requires memory systems that...

I

ii.

support incremental encoding and storage of new information, such that the
contents of the agent’s internal knowledge cache keep pace with environmental
dynamics; and

support online knowledge retrievals, such that agent reasoning reflects and takes
advantage of its latest observations of the state of the world.

R2. Support Diverse, Comprehensive Learning
Given that the agent...

i

ii.

is embedded within a complex environment (C1) for a long-term existence (C7); and
must assimilate and exploit environmental regularities (C3), which occur at varying
time scales, including those apparent from a single instance or spread across time,
in order to effectively contend with diverse tasks (C4) that entail complex
interactions (C5);
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the agent requires memory systems that...
i. individually support diverse forms of learning, such that optimized mechanisms will
efficiently and accurately detect specific types of environmental regularities; and
ii. conjointly support comprehensive coverage of learning, such that the agent is
broadly sensitive to, as well as able to represent and apply, a wide variety of task-
specific knowledge about the world.

R3. Support Diverse Knowledge Representation
Given that the agent...
i. is embedded within a complex environment (C1) for a long-term existence (C7); and
ii. must assimilate and exploit environmental regularities (C3) in order to effectively
contend with diverse tasks (C4) that entail complex interactions (C5);

the agent requires memory systems that...
i. support representing diverse types of knowledge, including contextualized
memories of experiences, as well as more generalized facts, beliefs, and relations
about objects in the world.

R4. Scale Efficiently to Large Bodies of Knowledge
Given that the agent...
i. is embedded within a complex environment (C1) that changes quickly (C2) over a
long-term, continual existence (C7); and
ii. is contending with diverse tasks (C4) entailing complex interactions (C5);

the agent requires memory systems that...

i. support efficient incorporation of new information and access to existing
knowledge, such that agent retrievals, drawing from the wealth of available
knowledge that arises from environmental and task experience over a long lifetime,
are timely, given the rate of environmental dynamics.

R5. Support Effective Access to Knowledge
Given that the agent...
i. must assimilate and exploit environmental regularities (C3) in order to effectively
contend with numerous tasks (C4) entailing complex interactions (C5); and
ii. is embedded within a dynamic environment (C2) and is limited with respect to its
computational resources (C6);

the agent requires memory systems that...
i. support effective access to knowledge about environmental regularities and past
task performance, such that retrievals improve the agent’s ability to contend with
the complexities of its current situation.
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R6. Task Independence
Given that the agent...
i. is embedded within a complex environment (C1) that changes quickly (C2) over a
long-term, continual existence (C7); and
ii. must assimilate and exploit environmental regularities (C3), given limited
computational resources, in order to effectively contend with numerous tasks (C4)
that entail complex interactions (C5);

the agent requires memory systems that...
i. encapsulate environmental regularities and interaction complexities that are
independent of task and that occur at time scales greater than that of the agent,
thereby reducing the complexity of learning task-dependent knowledge.

Table 3 illustrates the how the characteristics (C1-C7) of environment, task, and agent, as
described above, together impose these requirements (R1-R6) upon memory systems for
generally intelligent agents. While all of these characteristics constrain memory systems, it
is useful to note that task independence of the mechanism (R6) draws upon the breadth of
the challenges with which generally intelligent agents contend, and all requirements are
influenced by the constraint of dealing with numerous, complex, and novel tasks (C4), a
property that typically does not apply to short-lived, task-dependent systems.

Table 3: The Requirements on Memory Systems for Generally Intelligent Agents Imposed by Characteristics
of Environment, Task, and Agent

CHARACTERISTICS

C1 C2 C3 C4 C5 cé Cc7
Complex Dynamic  |Regularitiesin| Complex Complex Limited Extended
Environment | Environment | Environment Tasks Interactions Agent Agent
RL Do v | v [ v v
Hr2 [onie et v v v v v
[25] -
é R3 gle‘;sesseentation ‘/ ‘/ ./ ‘/ ‘/
R4 g];?ilceiently v v v v v
2 [ v v [ v v v
R6 ?r?jvle(pendence v v v v v v v
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Table 4: The Degree of Requirements Coverage in Related Fields of Research
REQUIREMENTS

R1 R2 R3 R4 R5 R6
Incremental Comprehensive Diverse Scale Effective Task
Learning Learning Representation Efficiently Access Independence

Cognitive Modeling/ v, v,

Architecture |Zl O IZI
Case-Based ",

Reasoning O O O O
Information Retrieval/ I~

Databases O M O
Knowledge W, —

Representation D D IZ

2.3 Related Fields

The characteristics of environment, task, and agent structure impose significant
requirements upon memory systems that must be considered and satisfied concurrently. In
this section we briefly and broadly discuss related fields and the degree to which their
efforts relate to and satisfy these requirements in the context of memory systems. This
discussion is summarized in Table 4, a reproduction of Table 1 presented in the
introduction to this document.

Cognitive Modeling/Architecture

While it is common for cognitive architectures and models to commit to task independent
approaches (R6) for incremental and online encoding (R1) of arbitrary environmental
perception (R3) as internal, declarative knowledge, as well as later retrievals using diverse
(R5), and often cognitively inspired, methods (Langley et al., 2009), these mechanisms,
with few exceptions, such as those architectures, like Soar (Laird & Rosenbloom, 1996),
that utilize the Rete algorithm for efficient matching of productions (Forgy, 1982;
Doorenbos, 1995), do not scale (R4) to large knowledge bases (Douglass et al., 2009;
Douglass & Myers, 2010). Additionally, much work must still be done to explore the full
breadth of learning mechanism implementation and integration (R2) that must be in place
to effectively capture and apply the variety of task and environmental regularities
encountered by long-living agents, including those of autobiographical agent experience
(Derbinsky & Laird, 2009) and appraisals (Mariner et al., 2009), as well as statistical
regularities in environmental and task demands (Schooler & Anderson, 1997).

Case-Based Reasoning

Case-based Reasoning (CBR: Kolodner, 1992) research focuses on methods for effectively
accessing (R5), adapting, and incrementally updating (R1) prior case information to solve
specific problems. While work has been done in case-base maintenance methods (Cummins
& Bridge, 2009) to combat issues of case utility in large case bases (Smyth & Cunningham,
1996), research focus is typically not applied to online problem solving at the pace of
environmental dynamics (R1), nor are most systems evaluated over long lifetimes (R4).
Most work is highly applied and task-specific (R6), including static, problem-specific case
formats (R3), as well as problem-optimized case retrieval, adaptation, revision, and
retention algorithms (R2).
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Information Retrieval/Database Management Systems

The Information Retrieval (IR: Singhal, 2001) and Database Management System (DBMS:
Ramakrishnan & Gehrke, 1999) research communities have developed substantial
literature over the last 50 years (Codd, 1970; Agrawal & Srikant, 1994; Gray et al., 1997;
Chaudhuri, 1998; Zobel & Moffat, 2006) on efficient data structures and techniques (R4) for
supporting task-independent (R6), expressive queries (R5), on large amounts of diverse
data (R3), as well as batch analytical and statistical processing (R2). However, while it is
common for problem specifications to detail properties of queries, users, and data services
(ex: Chaudhuri et al., 2000), it is rare for these fields to focus on dynamic interactions with
complex environments across numerous tasks, and thus they have little to contribute to
issues of online (R1) or comprehensive (R2) learning of complex environmental and task
regularities, nor the most effective forms of data access (R5) to support agent performance
across a variety of tasks.

Knowledge Representation and Reasoning

Knowledge Representation (KR: Davis et al., 1993) is an area of artificial intelligence
research that focuses on the epistemological and ontological issues of describing the
diversity of the world (R3), paying particular attention to the effects on processes such as
reuse (R6) and inference (R1, R5), typically with respect to properties of expressiveness,
validity, and efficiency (R4). While there is work applying KR techniques to a variety of
problems, such as planning (temporally and spatially), decision-making, and reasoning
under uncertainty, the focus is typically not on diverse learning methods (R2) for
numerous, novel tasks in complex domains, nor is it frequent for knowledge bases or
inference methods to scale (R4) to knowledge stores required for long-living, generally
intelligent agents in dynamic environments (Crawford & Kuipers, 1991; Lenat, 1995).
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3. Research Approach

To set the stage for discussing our prior and future work relating to the study of the
episodic and semantic memory mechanisms in a general cognitive architecture, we discuss
here our research approach: we begin with a description of research methodology,
exemplifying the process with a description and rationale of our initial research direction;
and then proceed with a presentation of Soar, the general cognitive architecture in which
we implement and evaluate candidate memory mechanisms, including technical detail
relevant to our proposed work and reasons for adopting it as our research platform.

3.1 Research Methodology

As depicted in Figure 1, we adopt an iterative approach to memory system research,
decomposed into a directed cycle of analyzing prior work, developing theoretical
commitments, exploring the space of mechanism, and performing evaluation. In each sub-
section below, we more precisely define these phases and, in order to exemplify the
process, discuss how this breakdown applied to our prior work.

Analysis

We begin by surveying the significant body of prior work related to memory systems
research, including theoretical and experimental psychological/cognitive scientific
literature, task/environment decompositions, and relevant computational approaches,
such as implemented cognitive models and information retrieval techniques. The results of
this phase are two-fold: (1) specific ways in which our work-to-date does not satisfy the
memory system requirements for generally intelligent agents and (2) potentially fruitful
paths for enhancing our models via new theoretical commitments, as well as apposite
means for evaluation and comparison.

i Algorit

Figure 1. Memory System Research Methodology
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Initial Direction. Inherent in memory system research are the clashing goals of functionality
and efficiency. As previously discussed in the context of memory system requirements, we
seek on one hand to develop mechanisms that endow agents with flexible (R5) and
expressive (R3) access to the full breadth and depth of their experience (R2): ideally, an
agent’s cognitive architecture would continually soak every last drop of knowledge from
each and every experience (R1), ensuring future improvement on all known tasks and the
utmost of generalization (R6) and transfer to a wide variety of possible novel problems.

Concurrently, however, we must ensure that computationally bounded agents making use
of these memory systems are not hindered in their decision-making and ability to act in the
world (R4). At each moment in time, the potential value of seeking and applying prior
experience changes, relative to the agent’s current situation and goals. Thus an ideal
cognitive architecture, one that minimizes computational cost and maximizes the expected
value of retrieved knowledge, would continually seek to isolate, maintain, and extract only
that prior knowledge that is most directly relevant to the agent’s current and expected
future context.

As discussed previously (see Table 1), a great deal of cognitive modeling and cognitive
architecture work focuses on understanding functionality, while paying very little attention
to the degree to which proposed theory and mechanisms will scale to large bodies of
knowledge and long agent lifetimes. Thus, as our inaugural focus, we sought to understand
the computational challenges involved in extending generally intelligent agents with basic,
task-independent episodic and semantic functionality that scaled with large bodies of
knowledge.

As we expatiate below, in order to make tractable progress along this path, our initial
intent was to make limited explicit assumptions as to regularities of agent experience,
thereby minimizing contributions to R2, while making very constraining assumptions as to
mechanism usage and the upper bounds and growth characteristics of computing
resources, thereby providing generalize-able contributions to R4.

Theory

Once we have analyzed pertinent sources, we synthesize by posing specific theoretical
explanations to explore. Theoretical commitments include both the functionality supported
by the memory mechanism and a model of use.

The functionality of a memory mechanism can be formulated as committing to a set of
design decisions within the space of possible computational memory models, forming
functional requirements along the dimensions of Encoding, Storage, and Retrieval (see
Appendix A).

A model of use entails commitments to expected regularities in agent experience, as
dictated by properties of task and environment, which relates to likely patterns of
perceived information; regularities of memory mechanism usage, which speaks to expected
frequency, composition, and complexity of knowledge queries and manipulations; and
constraints on computational time and space resources.
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Initial Direction. As discussed in the analysis section, our initial goal was to efficiently scale
basically functional mechanisms to large bodies of knowledge over long agent lifetimes.
The details and justification of our design decisions, requiring a good amount of additional
explanatory build-up, are discussed later for episodic (Section 4) and semantic (Section 5)
mechanisms, but our model of use commitments are expatiated here.

We committed to the following two key theoretical assumptions regarding the regularities
of agent knowledge and information agents would experience; as discussed below, these
presumptions are neither new nor unattested, but have been incorporated in systems
research, design, and implementation, including Soar, for decades:

T1.For learning to be tractable across numerous, complex tasks and environments, we
assumed agents must re-use mental structures in their internal representation of
knowledge: for even complex agents, the number of distinct knowledge structures
across a long period of time is likely to be much smaller than the total number of

structures (|distinct structures| < |all structures|).

This observation has been validated in the production matching literature and is key
to efficient sharing, a technique that reduces match effort across productions by
reusing data structures to cache intermediate results of common conditions. For
instance, Doorenbos (1995) demonstrated how sharing can have a dramatic effect
on match effort when learning large amounts of long-term procedural knowledge.
He showed empirical evidence across seven rule testbed systems that while sharing
reduced the number of tokens, data structures representing information about
partial rule matching, in the initial, often hand-coded, rule set by a factor of only
about 1.5 to 10, this computational saving increased significantly as each system
learned new rules, resulting in token reduction ranging from 450-1000 when each
system had learned more than 100,000 productions.

T2.Change in the world tends to be local and infrequent: for even complex agents, the
degree of structural change experienced when the agent refreshes current
perception is likely to be much smaller than the size of the complete agent state

(|structural changes| < |state structures|).

This observation is key to optimizations over re-computation of intermediate
results in production matching systems. For instance, the Rete algorithm (Forgy,
1982) exploits this assumption by caching all intermediate matching computation,
including conjunctive join relations, whereas TREAT (Miranker, 1987) caches only
constant matches and re-computes relations on-demand. Depending upon
properties of the experimental data set, these design decisions lead to significant
trade-offs in production load and match computation (Nayak et al., 1988).
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With respect to constraints on computing resources, memory, though not unlimited, is
generally considered cheap and plentiful, while time is expensive and limited, and thus our
goal was to minimize processing time, possibly at the cost of memory.

In the limit, we proposed efficient support for memory mechanism operations as sub-linear
in size of the memory store, which would presumably grow proportionally with the lifetime
of the agent, while remaining at most linear in memory consumption.

As an absolute time requirement, we looked to prior experience with real-time agents,
which suggested that the Soar cognitive architecture must execute its primitive cycle in 50-
100ms to maintain sufficient reactivity in real-world tasks. As a direct consequence, for the
agent to maintain online, incremental learning (R1) of perceptual information in complex,
dynamic environments, the encoding operation had to occur in fewer than 100ms.
However, operations involved in the storage and retrieval of internal knowledge could be
spread across multiple cycles, but would likely decline in utility (R5) with increased
computing delay.

We reasoned that this relatively unbiased, baseline understanding of efficiency would
inform all later explorations, providing a sense of how absolute computation space and
time of memory mechanism operations scale with very large knowledge bases on
commodity hardware.

Mechanism

Once a set of theoretical commitments is posed, we can begin enumerating and exploring
the space of candidate memory mechanisms. This process includes identifying and
developing all data structures and algorithms necessary to fully implement the functional
requirements, as well as complexity analysis to understand how these processes will scale,
while adhering to computational constraints and optimizing for regularities in experiential
and usage patterns, as defined in the model of use.

If during this development process we identify a component of theory that is not likely to
be satisfied, such as implementing a search of arbitrary run-time data in constant time, we
will need to reconsider and reformulate these commitments.

Initial Direction. Details of our initial episodic (Section 4) and semantic (Section 5)
mechanisms are detailed later in this document.

Evaluation

Given a set of theoretical commitments, we can also develop evaluation metrics and
experiments to measure and analyze the degree to which the theory is satisfied, and the
acceptability of any tradeoffs involved, as framed by the model of use.

Specific evaluation metrics include computational resource usage, such as maximum/

average processing time and memory; task-specific performance on a variety of problems,
including the degree to which experimental variants improve, or outright enable,
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performance; and, where applicable, the degree to which mechanism operation correlates
with the predicted outputs of modeled cognitive processes.

If the theory is too vague, such as to not lend to crisp measurement and comparison, we
must revise these commitments. Likewise, a mechanism implementation that is not
properly instrumented requires revision. Given both theoretical commitments and a set of
candidate mechanisms, we can properly evaluate memory systems, leading to subsequent
analysis, wherein we compare to other models and implementations and resolve to
iteratively revise and enhance the theory and/or mechanism, etc.

Initial Direction. Details of our initial episodic (Section 4) and semantic (Section 5)
evaluation are detailed later in this document.

Retrospective

Once begun, we argue that this iterative process serves as a practical, yet principled, top-
down method of exploring the infinite space of computational memory mechanisms
(Appendix A) while incrementally progressing towards greater coverage of memory
system requirements for generally intelligent agents (Table 1).

The resulting contributions, as discussed above, may include data structures, algorithms,
and complexity analysis, which not only empower others to reproduce results, but also
extend work in a variety of systems; demonstrations of high-level cognitive capabilities,
which increase overall agent proficiency and robustness within a variety of tasks and
domains; and evaluation benchmarks, which facilitate comparison and progress amongst
diverse systems and research avenues.

3.2 Research Architecture

We now shift our discussion from research methodology to Soar (Laird, 2008), the general
cognitive architecture in which we are implementing and evaluating candidate memory
mechanisms. We begin with an introductory discussion of why we plan to study memory
systems in context of an architecture, as opposed to in isolation. We then transition to our
reasons for choosing Soar as the research platform, drawing on the characteristics of
generally intelligent agents, including the tasks with which they contend and environments
in which they are embedded, as well as the resulting requirements imposed upon their
memory systems (see Section 2) that we hope to investigate and ultimately satisfy. Finally,
we relate the technical details of Soar relevant to our research goals.

The Case for Architecture

A great deal of computational memory model research has focused on particular
mechanisms, primarily in isolation of agent architecture, goals, and behavior. For instance,
John Anderson’s rational analysis work (Anderson, 1990; Anderson, 1991; Schooler &
Anderson, 1997; Anderson & Matessa, 1998) posits that since the human cognitive
architecture will optimize agent behavior for task performance, the best method for
understanding human cognitive behavior lies in environmental and task analysis, rather
than attempting to analyze specific human problem-solving methods.
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While useful in analyzing, developing, and evaluating individual memory mechanisms, this
isolated approach considers only the structure, regularities, and interactions with respect
to properties of environment and task, ignoring those of the agent (Simon, 1991). As a
consequence, it is difficult to synthesize and apply these specifications within the context of
a generally intelligent agent and leaves many questions unanswered, such as what
components need be instantiated in a complete architecture; and once endowed with
knowledge, how do they connect, interact, and integrate, especially in context of learning,
dynamic environments, and extended lifetimes, to form intelligent behavior.

Thus, we plan to study whether there are computational and functional constraints and
capabilities that emerge from integrating long-term declarative mechanisms in a general
agent architecture and engaging memory-endowed agents in multiple, complex tasks. We
now consider which particular architecture is most suitable in context of our research
goals.

Architecture Selection

We consider the following two metrics when comparing architectures for evaluating
memory mechanisms for generally intelligent agents. First, the architecture must not, a
priori, theoretically invalidate a requirement for memory systems (see Section 2). If this
were the case, no candidate memory mechanism could possibly satisfy the requirement. As
an example, consider an architecture in which agent state was represented as a fixed-
length binary buffer; given such a constraint, no memory mechanism could possibly satisfy
R3, that of supporting diverse knowledge representation. Second, we consider the degree
to which the architecture can support experimentation across the dimensions (C1-C7)
characterizing generally intelligent agents, the tasks with which they contend, and the
environments in which they are embedded. Given these metrics, we discuss below the
reasons for which we chose the Soar cognitive architecture (Laird, 2008).

Task-independent (R6), efficient access to (R4)/effective use of (R5) diverse knowledge (R3)
Especially relevant for this work is Soar’s considerable history of efficiently representing
and bringing to bear large bodies of knowledge to solve diverse problems using a variety of
methods (Doorenbos, 1995; Laird & Rosenbloom, 1996). This simultaneous focus on
efficiency and generality uniquely distinguishes Soar from other agent architectures.

At one extreme, some systems boast impressive generality and applicability, as exemplified
by the impressive number and variety of psychological phenomena captured by ACT-R
models (Anderson et al., 2004). However, these systems rarely consider the computational
implications of scaling their theoretical commitments to the large knowledge bases
accumulated over long agent lifetimes. For instance, the ACT-R declarative memory module
has been shown not to scale to large stores of declarative knowledge (Douglass et al., 2009;
Douglass & Myers, 2010). However, because ACT-R models primarily focus on explaining
details of small time-scale, psychological experiments, research progress is typically
unimpeded and, until recently, little attention has been expended into researching the
degree to which the details of the ACT-R theory can scale to the conditions with which
generally intelligent agents grapple.
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Diametrically opposed are systems that demonstrate competency on a constrained set of
tasks and knowledge representation, while not contending with the overwhelming quantity
and diversity of challenges with which generally intelligent, autonomous agents contend in
complex domains. For instance, Cyc (Lenat, 1995) demonstrates comprehensive data
integration and hybrid inference capabilities over unparalleled size and scope of
knowledge, but suffers debilitating inefficiencies when faced with even simple real-time
planning and problem solving tasks. Additionally, some systems are limited in their
knowledge representation, such as semantic networks in MicroPsi (Bach, 2003), fixed-sized
buffers in ACT-R (Anderson et al., 2004), and productions in classic Soar (Laird &
Rosenbloom, 1996), and are therefore likely to demonstrate difficulties effectively
extending to the complexities inherent in complex environments and tasks.

In contrast, version 9 of Soar (Laird, 2008), the current iteration of the architecture,
implements a fully relational, symbolic representation (R3) across a variety of task-
independent (R6) memory systems that have been shown to scale (R4) to large stores of
knowledge over long agent lifetimes (Doorenbos, 1995; Derbinsky & Laird, 2009;
Derbinsky et al., 2010). For instance, the Soar 9 procedural memory mechanism, inherited
from classic Soar, supported the TacAir-Soar system (Jones et al., 1999), which was
composed of thousands of symbolic production rules and managed 722 scheduled flights of
fixed-wing aircraft flew during an operational training exercise that ran for 48 continuous
hours.

Building on Soar’s existing implementation, we can tractably study and evaluate memory
mechanisms with large data sets, such as the WordNet lexicon (Miller, 1995), and
experiences from ecologically valid, complete agents, such as robots in real and simulated
environments, over weeks, months, or even years of cognitive real-time (Laird &
Derbinsky, 2009). At this time scale, we can also begin to study how memory systems
interact with other cognitive mechanisms (R5), such as emotional appraisals and
procedural learning, including their relative strengths and limitations in situations and
tasks approaching those of long-lived humans. Additionally, Soar’s generality of knowledge
representation and reasoning allows us to not only study a large spectrum of tasks, but to
also extrapolate and apply our results to other systems and architectures.

Support for Complex Tasks (C4), Environments (C1-C3), and Interactions (C5)

The degree to which the agent architecture can support systems integration and
deployment directly affects the ability to evaluate memory mechanisms on a variety of
tasks in complex environments. While primarily an issue of engineering, this is a valid
practical consideration for effectively pursuing our proposed work.

Soar supports a variety of programming languages (such as C++, Java, and Python) on all
major operating systems (including Windows, Mac OS, Linux, and i0S) and has been
interfaced in diverse execution environments, including RL-Glue (Tanner & White, 2009);
game systems, such as ORTS (Wintermute et al., 2007), Infinite Mario (Mohan and Laird,
2010), and Quake (Laird, 2001); and robotics simulation and hardware platforms (Laird,
2009).
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This capability sharply contrasts agent architectures that are limited by language/system
(such as the Lisp requirement of ACT-R: Anderson et al., 2004), partial implementions
(such as Clarion: Sun, 2006), or theoretically posed frameworks (such as LIDA: Franklin &
Patterson, 2006; and Icarus: Stracuzzi et al., 2009).

The Soar Cognitive Architecture

We now discuss the technical and theoretical details of Soar relevant to our research of
memory mechanisms. Throughout this discussion, we make reference to how foundations
are laid within the architecture for satisfying the requirements (R1-R6) of memory systems
for generally intelligent agents.

Figure 2 shows the structure of Soar (Laird, 2008): symbolic short-term memory holds the
agent’s assessment of the current situation, derived from perception and via retrieval of
knowledge from its symbolic long-term memory systems; action in an environment occurs
through creation of motor commands in a buffer in short-term memory; and the fixed
decision procedure selects operators and detects impasses.

At an abstract level, Soar’s symbolic representation of present state and topological
integration of long-term declarative and procedural knowledge is not unique: this
archetypal arrangement is similar to that of many other cognitive architectures, especially
those that are either designed to model human behavior, such as ACT-R (Anderson et al,,
2004), LIDA (Franklin & Patterson, 2006), and Clarion (Sun, 2006), or are inspired by
human behavior, such as Icarus (Stracuzzi et al., 2009). Although there are many
commonalities in these systems, there are also significant differences in design decisions of
and theoretical commitments to knowledge representation, memory system functionality,
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and learning. For instance, while Soar’s short-term memory representation, as detailed
below, is manifested as an arbitrarily complex symbolic graph, ACT-R maintains a fixed set
of constant-sized, symbolic buffers and Clarion integrates symbolic and connectionist
representations. These structural departures often reflect differences in research goals and
phenomena of study.

Although Soar has many additional learning mechanisms and processes, the most relevant
aspect of its design to the study and evaluation of the episodic and semantic long-term,
declarative memory systems is the functionality and structure of its symbolic short-term
knowledge store, termed “working memory.” As previously stated, Soar’s working memory
contains an agent's dynamic internal state, including perceptual data, situational
awareness, current goals and intentions, and motor commands. Functionally, working
memory represents arbitrary and novel combinations and compositions of symbols (R3). It
also functions as a common substrate upon which the cognitive architecture applies agent
control knowledge, represented as production rules, to symbolically represent, reason
with, and retrieve long-term knowledge (Derbinsky & Laird, 2010). Soar's working
memory is implemented as a directed, connected graph of working memory elements
(WMESs). Each WME is a symbolic triple, consisting of an identifier (a node or vertex),
attribute (a link or edge label), and value (a node or terminal value), and working memory
as a whole is defined as a set, such that no two WMEs can have the same identifier,
attribute, and value.

To balance environmental reactivity (R1) with rich access to large bodies of knowledge
(R5) while contending with arbitrarily complex problems (R6), Soar adopts the problem
space hypothesis (Newell & Simon, 1972) as a core theoretical commitment. According to
this conjecture, problem solving in a task is defined as generalized search in a problem
space. A problem space is composed of a set of states and a set of operators, which
transform one state to the next. At each state in the problem space, knowledge is used to
evaluate the operators that are available in the current state and determine the next-best
operator. As the agent contends with multiple tasks and problems, it is possible that
problem solving may extend over multiple problem spaces.
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The process of extracting directly available knowledge from a knowledge base and making
it available to the generative search process at the problem space level is called knowledge
search (Newell 1990; Strosnider & Paul, 1994). This process is depicted in Figure 3, where
states are represented as shaded oval rings, operators as edges connecting these rings, and
knowledge base(s) as the graphical trees stemming from each ring. Note that while the
depth of the knowledge base below each state is limited, illustrating a finite quantity of
immediate information, the plane upon which states are situated is potentially infinite in
scope, demonstrating the possibility of an expansive problem space, resulting from the
generative process of transforming states through operator application. Note also that
search through problem space is not guaranteed to exhibit cyclicity: search progress is
made as operators transform state and, given environmental dynamics and the resulting
changing availability of operators within problem space(s), there is no guarantee of the
ability to reach a prior state directly or indirectly via application of one or more operators.

There are many types of knowledge search that are computationally unbounded, such as
generalized logical inference and structural graph matching. Soar, however, firmly commits
to the concept of bounded rationality (Simon, 1991), which contends that rationality of
agent decision making is limited by information availability, mechanisms in the cognitive
architecture, and finite time, relating to dynamic pressures of the environment.
Consequently, Soar distinguishes generative search in problem space from bounded search
of immediate knowledge in long-term memories, and thus any unbounded computation
over knowledge is not incorporated within architectural retrieval mechanisms, but must be
instead formulated as deliberate problem search, such that task-dependent agent control
knowledge can be brought to bear to prune the search space while the agent maintains
continual reactivity with its complex, dynamic environment.
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A related commitment of the Soar cognitive architecture is the strict division of task-
independent architectural mechanisms from task-dependent agent knowledge. This
separation contains a strong analogy within the computer architecture world, in which
designers strive to optimize system utility, as measured by such factors as production cost,
potential for broad utilization, energy consumption, and application speed, by shifting the
balance between those mechanisms fixed in highly efficient and potentially parallel
hardware and the range of functionality supported by the less efficient, user-accessible
software instruction set. When applied to knowledge search, this optimization process
appeals to the difficulties, well studied in the database and information retrieval
communities, involved in maintaining a computationally efficient search over run-time
domain knowledge (Strosnider & Paul, 1994). The resulting intuition, well studied in
computational theory, is that the greater the degree to which the complexity of a
generalized search process can be constrained, the greater the potential for efficient
implementation via highly optimized data structures and algorithms. Soar applies this tenet
by efficiently encoding in fixed mechanisms, such as memory systems, the task-
independent domain knowledge, such as environmental regularities at time scales that
approach or exceed the life of the agent, which may improve the quality and performance
of dissociative knowledge retrieval processes (R6), while maintaining universal
computation at the level of problem search (Derbinsky & Laird, 2010), where experience
and task-dependent agent knowledge may be brought to bear incrementally to prune
complex task solving (Laird & Wray, 2010).
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4. Prior Work: Episodic Memory

We now begin a review of our prior work, in which we sought to understand the
computational challenges involved in extending generally intelligent agents with basic,
task-independent memory mechanisms that scaled with large bodies of knowledge. We
discuss our work relating to episodic memory here, and continue to semantic memory in
Section 5. Then, in Section 6, we present our proposal for future work, in which we explore
research questions relating to expanded functionality in both of these memory systems.

This section begins with a motivational description of the episodic memory system,
including a small amount psychological background; proceeds with a discussion of related
work; continues to a functional specification of a computational memory model; describes
novel data structures and algorithms we developed to efficiently implement this memory
system; and concludes with evaluation.

4.1 Motivation

As first described by Tulving, episodic memory captures historical knowledge
contextualized in agent experience (Tulving, 1983). Whereas semantic knowledge encodes
what an agent “knows,” episodic knowledge captures an historical stream of what an agent
“remembers.”

Functionally, Tulving discusses the following requirements of an episodic memory system:

E1. Architectural: episodic retrievals are available for all tasks and the process of
storing memories does not compete with knowledge-based reasoning (related to
R6, the task-independent requirement of memory systems for generally intelligent
agents).

E2. Automatic: episodic memories are stored without deliberation. Reasoning can only
indirectly influence episodic storage, such as through deliberate rehearsal (related
to R1, the requirement for incremental, online learning).

E3. Autonoetic: retrieved episodic memories are distinguished from current sensing.

E4. Autobiographical: retrieved episodes are represented in the context in which they
were originally experienced.

E5. Temporally indexed: retrieved episodes include meta-data providing temporal
context with respect to other episodes.

Nuxoll has done some work (2007) to postulate as to and demonstrate some of the
functional roles episodic memory may serve in context of a general cognitive architecture,
such as facilitating virtual sensing, action modeling, and retroactive learning.

In context of the memory requirements for generally intelligent agents, incorporating

episodic memory in a cognitive architecture contributes significantly to R2, the support of
diverse, comprehensive learning, by incrementally (R1) providing an agent rich access to a
contextualized, temporally indexed, internal store of its prior experience. However, scaling
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(R4) effective access (R5) to this knowledge in a task-independent fashion (R6) over long
agent lifetimes poses a significant challenge.

4.2 Functional Specification

To develop a baseline understanding of the efficiency challenges involved in affording
agents the functional benefits of episodic memory over long lifetimes, we adopted the high-
level design decisions described by Nuxoll and Laird (2007). Here we describe those
generally, followed by a mapping onto Soar, as depicted in Figure 4.

The episodic storage process automatically encodes a subset of agent state (E1, E2) at
regular intervals (E2) and temporally indexes this knowledge within the episodic store
(E5). This process does not modify or generalize stored episodic knowledge, and thus
episodic knowledge grows strictly monotonically, faithfully capturing the full extent of
agent experience. To retrieve episodic memories, the agent deliberately constructs a cue
(E1), partially specifying relevant contextual features within the episode. The cue matching
process selects a single best match from the episodic store, defined as the most recent
qualitative nearest-neighbor, and the retrieved episode is fully reconstructed (E4) in a
special buffer (E3), such that the agent can reason about this knowledge without confusing
current sensing and past experience.

In Soar, as illustrated in Figure 4, agent state is represented in its Working Memory as a
directed, connected graph. Architecturally specified subsets of this graph form the episode
to be encoded, the cue to be matched, and the reconstructed episode to be reasoned over.
The requirement to support this arbitrary graph structure had significant implications for
the underlying mechanism implementation, as discussed later. A simpler representation,
such as a vector or propositional representation, would have made it possible to develop
simple and very fast implementations of episodic memory, but at significant cost in
expressability and generality (R3). By adopting this representational requirement,
however, we developed an underlying implementation that is independent of other details
of Soar, thereby generalizing to other architectures whose dynamic data can be fully
captured by a graph-based representation.
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4.3 Related Work

To contextualize our work, we first discuss the case-based reasoning research related to
our functional specification and then evaluate an existing episodic memory system. In both
cases we focus on the degree to which the work satisfies the base requirements (R1-R6) for
memory systems, as well as those specific to episodic memory (E1-E5).

Related Case-Based Reasoning Work

Episodic memory research is closely related to studies in case-based reasoning (CBR). The
goal of CBR is to optimize task performance given a case-base, where each case consists of a
problem and its solution (Kolodner, 1992). In CBR systems, however, case structure is
typically pre-specified, case-base size is either fixed or grows at a limited rate, and the
cases usually do not have any inherent temporal structure. In contrast, an episodic store
grows with experience, accumulating snapshots of an agent’s experiences over time. An
agent endowed with this memory can retrieve relevant episodes to facilitate reasoning and
learning based upon prior events.

Efficient nearest-neighbor algorithms have been studied in CBR for qualitative and
quantitative retrieval (Lenz & Burkhard, 1996; Stottler et al., 1989; Wess et al., 1994). The
underlying algorithms and data structures supporting these algorithms, however, typically
depend upon a relatively small and/or static number of case/cue dimensions, and do not
take advantage of the temporal structure inherent to episodic memories.

Considerable work has been expended to explore heuristic methods that exchange reduced
competency for increased retrieval efficiency (Smyth & Cunningham, 1996), including
refined indexing (Daengdej et al., 1996; Fox & Leake, 1995), storage reduction (Wilson &
Martinez, 2000), and case deletion (Patterson et al., 2003). Many researchers achieve gains
through a two-stage cue matching process that initially considers surface similarity,
followed by structural evaluation, such as Forbus et al. (1995).

The requirement of dealing with time-oriented problems has been acknowledged as a
significant challenge within the CBR community (Combi & Shahar, 1997), motivating work
on temporal CBR (T-CBR) systems (Patterson et al., 2004), and research on the
representation of and reasoning about time-dependent case attributes (Jeere et al., 2002),
as well as preliminary approaches to temporal case sequences (Ma & Knight, 2003;
Sanchez-Marré et al., 2005). However, existing T-CBR work does not deal with
accumulating an episodic store, nor does it take advantage of temporal structure for
efficient implementations.

EM: A Generic Memory Module for Events

Some systems and architectures make conjectures about long-term stores of prior
experience, such as CLARION (Sun, 2003; Sun, 2006), and temporal beliefs, such as ICARUS
(Stracuzzi et al., 2009). However, it is relatively rare to find a fully implemented, task-
independent, episodic memory system. Here we analyze one such existing system.

EM (Tecuci & Porter, 2007) is a generic store to support episodic memory functionality in a
variety of systems, including planning, classification, and goal recognition. EM is an
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external component with an API, wherein host systems must implement a thin interface
layer. The term “episode” in EM defines a sequence of actions with a common goal and is
represented as a triple: context (“general setting” of the episode), content (ordered set of
the events that make up the episode), and outcome (a domain/task-specific evaluation of
the result of the episode). Though meaningful in systems like planners, this
representational constraint is inappropriate for generally intelligent agents, as it may be
difficult to pre-define action sequences and outcome evaluation functions for long-living
agents that must contend with multiple, possibly novel, tasks.

EM queries are partially defined episodes and a single evaluation dimension. EM utilizes a
two-stage evaluation scheme, whereby a constant number (5) of potential matches are
found and then compared using a relatively expensive semantic matcher. While Tecuci and
Porter have shown results for learning in short (250 episode), single-task domains, it is
unclear whether the underlying algorithms and data structures will scale to agents with
many orders of magnitude more episodes.

4.4 Efficient Implementation

We have developed and analytically described novel data structures and algorithms for
efficient, task-independent, graph-based episodic memory systems that satisfies the
functional requirements above (Derbinsky & Laird, 2009). We decompose discussion of
this work into three episodic operations: storage, cue matching, and reconstruction.

Episodic Storage

Given an agent whose present state is represented as a connected, directed graph, we
define episodic storage as the process of encoding, at a given point in time, all information
necessary to recreate that state at a later time. By automatically associating a unique
temporal identifier with this captured data (E5), a storage process supports an
architectural (E1), automatic (E2), and autobiographical (E4) episodic memory system.

To satisfy this definition, a naive storage mechanism simply records all nodes and edges
that comprise agent state during each episode. While sufficient, this approach has
unsatisfying computational resource requirements: encoding time and space, per episode,
linear in the size of the state graph. Prior work by Nuxoll and Laird (2007), however,
exploits two key observations to improve this computational profile.

First, for learning to be tractable across numerous, complex tasks and environments,
agents must re-use mental structures (T1) in their representation of knowledge and thus,
for even complex agents, the number of distinct structures encoded across a long period of
time is likely to be much smaller than the total number of encoded structures (|distinct
structures| < |all structures|). Nuxoll and Laird extended this idea to episodic memory by

maintaining and referencing a global data structure, termed the Working Memory Tree, of
all distinct structures that had ever been encoded by the storage mechanism. With this
insight, episode storage can be conceptually understood as generating bags of pointers to
distinct structures in an experiential, incrementally and monotonically growing, temporally
global data structure, which benefits the overall implementation by compressing the
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Figure 5. Exploiting Structural Re-Use in Episodic Storage

representation of repeated structures. Whereas Nuxoll and Laird compacted agent state to
a tree with distinct edge labels, we extended this work to support a fully relational
representation, termed the Working Memory Graph (Figure 5).

The second observation is that change in the world tends to be local and infrequent (T2):
for even complex agents, the number of structural changes between episodes is likely to be

much smaller than the size of the complete agent state (|structural changes| < |episode

structures|). Given this insight, Nuxoll and Laird converted their explicit episodic
representation (Figure 5) to an implicit representation (Figure 6), associating with each
distinct global data structure node a list of temporal range(s) during which the associated
mental structure was present in agent state. This transformation reduces computational
complexity to space and time linear in structural change, as opposed to absolute number.
We extended this work to efficiently support the Working Memory Graph (Figure 6).

Cue Matching

Given an episodic store, as illustrated in Figure 6, and a cue, represented by an acyclic
graph partially specifying relevant contextual features, we define cue matching as
identifying the most temporally recent episode that shares the greatest number of symbolic
features structurally in common with the cue. This operation functionally supports task-
independent (E1) access to episodic knowledge.

To satisfy this definition, a naive cue matching mechanism performs a graph-match
between the cue and each episode in the store, beginning with the most recent and
concluding once a perfect match is found or once all episodes are considered and ranked.
While sufficient, this approach has unsatisfying computational resource requirements:
potentially exponential time, with respect to average episode size, for each graph-match
and a linear growth, with respect to the number of episodes in the store, in the number of
evaluations. With the following three strategies, we have built on prior work to improve
the tractability of both of the aforementioned issues.
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Figure 6. Exploiting Structural Stability in Episodic Storage

The first optimization is to only consider episodes for evaluation that contain at least one
feature in common with the cue. We can easily obtain this candidate list by cross-
referencing the cue with the working memory graph and incrementally merging pertinent
lists of temporal ranges.

An important extension to this technique is to recognize that the degree to which candidate
episodes match a cue will only change at the endpoint of a temporal range. Termed Interval
Search (Nuxoll & Laird, 2007), this optimization minimizes candidate episode evaluation.
For example, consider the feature expanded in Figure 6. Were this node a cue feature, we
could potentially avoid evaluating episodes 868 through 5308 (a savings of over 4000
evaluations!), as they are implicitly known, without exception, to all contain this feature.

The final optimization is to minimize the frequency of potentially combinatorial graph-
match evaluations by implementing a two-stage matching policy, a common technique (for
example: Forbus et al,, 1995). The key observation here is that a candidate episode only has
the potential to structurally match a cue if it contains all surface cue features, where a
surface feature is defined as a distinct, directed path from root to leaf without relational
consideration. Given the working memory graph, we developed a mapping from surface
feature matching to satisfaction of a set of disjunctive normal form (DNF) boolean
equations. Furthermore, we developed and implemented a novel discrimination network,
termed the DNF Graph, which efficiently and incrementally maintains satisfaction of a set of
DNF formulas during each endpoint of Interval Search (Derbinsky & Laird, 2009).

The consequent of these optimizations is a cue-matching algorithm that is guaranteed to
satisfy our functional specification, but which attempts to minimize temporal linear
scanning and combinatorial structural evaluation by processing only changes between
candidate episodes.
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Episode Reconstruction

Given an episodic store, as illustrated in Figure 6, and a valid temporal id of an episode, we
define reconstruction as the process of faithfully reproducing all working memory
structures that originally composed that episode. This process is tantamount to an interval
intersection query: collect all working memory graph structures that started before and
ended after a particular point in time.

To efficiently support this operation, we implemented a Relational Interval Tree (Kriegel et
al., 2000), which is a mapping of the interval tree data structure onto Relational Database
Management System (RDBMS) B+-tree indexes and SQL queries. As with the standard
interval tree, intersection queries execute in time logarithmic with the number of stored
intervals. Because intervals represent working memory structure changes, this growth
characteristic is sufficiently sub-linear with respect to the number of episodic memories.

4.5 Evaluation

We implemented these algorithms and data structures as the episodic memory module in
the Soar cognitive architecture. Our initial empirical evaluation served to validate
performance models of the primitive memory operations (see Appendix B), as well as to
lend evidence that our memory system implementation, while growing intractably in the
worst-case (linear in the number of episodes), performs within reasonable limits in
practice.

Our empirical evaluation domain, a competitive tile-based game, was particularly stressful
with respect to the size of agent state (over 2500 features), as well as the degree of
dynamics per episode (70-90% of perceptual features change each episode). In this game,
we have demonstrated sub-100msec. retrievals for a variety of cues; sub-10msec. storage
to capture about 1-2 KB/episode; and sub-50msec. reconstruction on commodity hardware
after 1 million episodes, which amounts to days or weeks of cognitive real-time.

In addition to providing baseline efficiency results, our mechanism, embedded within a
cognitive architecture, supports a variety of independent research, including the possibility
of an agent learning control over internal memory mechanisms (Gorski & Laird, 2009) and
situations in which episodic memory, in conjunction with other components of a general
cognitive architecture, serves as a valuable repository of action modeling knowledge (Laird
et al., 2010; Xu & Laird, 2010).
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5. Prior Work: Semantic Memory

In this section, we continue our discussion of our prior work, focusing now on the semantic
memory mechanism. We begin with a motivational description of the memory mechanism;
continue to a functional specification of a computational memory model, relating to the
ACT-R declarative memory module; describe novel data structures and algorithms we
developed to efficiently implement this memory system; and conclude with evaluation.

5.1 Motivation

The functional purpose of a semantic memory is to efficiently retrieve declarative facts
about mental concepts that have been experienced by an agent, independent of the context
in which they were originally learned (Tulving, 1983). The functional benefit of this
memory is premised on the assumption that some aspects of experience are re-usable over
time, independent of how situations may differ temporally, spatially, or with respect to
other contextual distinctions relative to an agent’s state and goals.

In context of the memory requirements for generally intelligent agents, incorporating
semantic memory in a cognitive architecture contributes significantly to R2, the support of
diverse, comprehensive learning, by providing an agent rich access to general, non-
contextualized information about the world in which it is embedded. However, as with
episodic memory, scaling (R4) effective access (R5) to this knowledge in a task-
independent fashion (R6) over long agent lifetimes poses a significant challenge.

5.2 Functional Specification

Arguably the most prolific exemplar of semantic memory in the cognitive architecture
research literature is the declarative memory (DM) module in ACT-R (Anderson et al,,
2004). In the ACT-R DM, semantic knowledge is represented as a set of chunks, which are
collections of labeled slots that have symbolic values. To retrieve declarative knowledge, a
production rule issues a request to the DM by populating the declarative buffer with
positive and negative slot-value pairs. These pairs are interpreted as hard constraints that
either must be met (positive) or must not be met (negative). Given this request, the module
searches the store for matching candidate chunks. If any are found, the DM module, given
default parameter settings, indicates a successful retrieval, selects randomly amongst the
candidate chunks and reconstructs it in the appropriate buffer. The module also supports
the use of non-symbolic aspects of current context and prior chunk retrievals as a form of
activation to bias selection amongst candidate chunks, functionality that is used in many
cognitive models. If no perfect match is found, the default behavior of the DM module is to
report a retrieval failure.

We adopted this interface and developed an abstract problem formulation of symbolic

semantic memory retrievals (Derbinsky et al., 2010). Appendix C includes details of this
formulation, including a mapping to the ACT-R declarative memory module.
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5.3 Efficient Implementation

Short-lived agents and typical cognitive models have very modest semantic memory
requirements. In these cases, naive data structures and algorithms, despite inefficiencies,
suffice for semantic retrievals. However, prior work (Douglass et al., 2009; Douglass &
Myers, 2010) has shown that cognitive models of complex tasks require more substantial
amounts of semantic knowledge, such as a large subset of the WordNet lexicon (Miller,
1995), and that the existing ACT-R retrieval mechanism does not scale. Likewise, it is
conceivable that over a long lifetime, a learning agent, engaging in multiple, complex tasks,
will need to incrementally store and have efficient access to large amounts of semantic
knowledge, as exemplified by the Cyc (Lenat, 1995) and SUMO (Niles & Pease, 2001)
ontological knowledge bases.

Given the functional specification described above, we have developed a baseline analytical
and empirical understanding of the efficiency challenges involved in affording agents the
functional benefits of semantic memory over long lifetimes (Derbinsky et al., 2010). To
address many of these problems, we developed system-independent methods for efficient
retrieval functionality that support most of the ACT-R DM specification. Additionally, while
we have not achieved the full functionality of ACT-R activation, we have moved towards
that goal by formulating and efficiently supporting a simpler class of activation bias.

Basic Retrievals

In this section we consider the retrieval problem without incorporation of sub-symbolic
activation. Appendix C provides an abstract decomposition of the retrieval problem and
Appendix D provides detailed implementation detail and analysis.

Without considering sub-symbolic activation, the basic retrieval problem is very similar to
a constrained form of a subset query on set-values, which has been widely studied in
database and information retrieval (IR) communities (Terrovitis et al., 2006). In its general
form, the worst-case time cost is known to be linear in the sum of the number of candidate
elements for each cue augmentation, though clever indexing methods have shown massive
average-case improvements in real-world data. We make use of tried-and-true methods in
this literature.

Our core indexing structure is an inverted index (Zobel & Moffat, 2006), a reverse hash
providing efficient access to elements that contain any single augmentation. We also order
cue processing based upon inverted index statistics of candidate cardinality, a common
technique in database query optimization (Chaudhuri, 1998). Incorporating these
lightweight components, retrievals are bound by the number of candidate elements of the
most constraining positive cue augmentation.

Preliminary Incorporation of Activation Bias

A major contribution of the ACT-R DM module to cognitive modeling is the sub-symbolic
influence of the current context and prior retrievals as a form of activation bias for
declarative retrievals (Anderson et al., 2004). This functionality, however, has been shown
to come at a significant computational cost that does not scale to large declarative
memories (Douglass et al., 2009; Douglass & Myers, 2010).
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While we have not achieved the functionality of all aspects of ACT-R’s activation scheme,
we have made progress by formulating (see Appendix C) and efficiently supporting (see
Appendix E) a simpler class of activation bias. This class is constrained by two key
requirements: (1) activation values of semantic elements are static unless altered by a
relatively infrequent update and (2) the activation update process must be locally efficient,
intuitively meaning it is bounded in both the number of elements addressed and the
amount of computation expended. Given these constraints, minor modifications to the
previously described indexing structures and algorithms (see Appendix E) yield efficient
support for semantic retrievals.

5.4 Evaluation

We implemented these algorithms and data structures as the semantic memory module in
the Soar cognitive architecture and have collected initial empirical evidence that our
mechanism, while growing intractably (linear in the number of semantic memories) in the
worst-case, performs within reasonable limits in practice. As detailed in Appendix F, we
evaluated the system on a scalable, synthetic data set, as well as the entirety of the
WordNet 3 lexicon (Miller, 1995). For successful retrievals on data sets scaling to millions
of semantic memories, our mechanism achieves sub-millisecond retrievals, which are two
orders of magnitude faster than previously reported comparable results (Douglass et al.,
2009).

In addition to providing baseline efficiency results, our mechanism, embedded within a
production-level cognitive architecture, has already supported independent research into
diverse mechanisms for action modeling (Laird et al., 2010) and will likely enhance future
work in a variety of areas, including natural language processing (Lonsdale & Rytting,
2001) and instructable autonomous agents (Huffman, 1994).
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6. Prior Work: Analysis

In this section, we synthesize and analyze our prior work on episodic (Section 4) and
semantic (Section 5) memory systems, including a summary of contributions, pitfalls, and
avenues to guide future work. This discussion contributes to the analysis phase of our
research methodology (see Section 3.1), setting the foundation for Section 7, in which we
detail our plans for future work.

As previously discussed (see Section 3.1), the intended contribution of our initial research
was to establish a baseline understanding, in the field of cognitive architecture (see Table 1
in the introduction to this document), of how computational episodic and semantic
memory models for generally intelligent agents scale with large amounts of knowledge
(R4) while providing the minimal functionality needed for real-world tasks. As an initial
approach, we made minimal assumptions (T1, T2) about regularities in environmental
information, agent knowledge, and mechanism usage, while shouldering requirements
involving faithful storage over long lifetimes and exact retrievals given constraining
computational resources.

Our work to date demonstrates analytically and empirically that faithful storage (especially
for episodic memory) and exact retrievals are intractable in the general case for long-lived
agents. However, we have formulated the computational problems involved for episodic
(Derbinsky & Laird, 2009) and semantic (Derbinsky et al., 2010) memory models and have
implemented mechanisms that demonstrate practical performance in isolated study, as
well as support crucial functionality as a part of an integrated cognitive architecture in
independent research.

Our experience thus far suggests that future work will need to concurrently walk two
paths: improving functionality and investigating diverse methods to combat computational
intractability.

6.1 Improving Functionality

While our initial work minimized memory mechanism functionality and concentrated on
matters of computational efficiency, it is time to push forth our understanding of
requirement R2, functional support for diverse, comprehensive learning, as informed by
numerous sources of related research, including the following two shortcomings of our
work-to-date.

One inadequacy of our existing work is an insufficient understanding of what information a
generally intelligent agent needs to incrementally encode within its experiential stores
such as to succeed in numerous tasks while exploring and remaining reactive to its
complex, dynamic environment. For instance, in our work with semantic memory (see
Section 5), while most semantic knowledge was preloaded from large datasets, such as
WordNet (Miller, 1995), we delegated encoding of experiential information to deliberate
agent action, as controlled by task-specific procedural knowledge. This approach is
incomplete and unsatisfying along several dimensions, including a lack of theory for the
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origins of this procedural knowledge, especially for novel tasks. By contrast, we opted to
automatically encode an architecturally defined subset of agent state in our work with
episodic memory (see Section 4). While this policy for accumulating episodic knowledge
has been demonstrated as sufficient to support numerous general cognitive capabilities
(Nuxoll, 2007), it is likely unsustainable computationally over long agent lifetimes (Nuxoll
et al.,, 2010), as it imposes a monotonically increasing storage requirement and thus makes
efficient retrievals difficult (Laird & Derbinsky, 2009). As described in Section 7, we plan to
examine these issues in extensions X1 and X3.

Another inadequacy of our prior work is that we don’t understand what sources of task-
independent regularities in agent experience can serve to supplement incomplete task-
dependent agent knowledge such as to increase the expected utility of memory retrievals in
the case of impoverished cues. In both our work with semantic and episodic memory
mechanisms, we condition retrievals on structured cues, and, in the case that multiple
memories match these cues with equal cardinality, bias the result towards recency of
memory access (as opposed, for instance, a random selection from amongst all candidates).
While this approach was computationally efficient, [subjectively] intuitive, and shallowly
reflective of psychological studies in human memory bias (Schacter, 1999), it ignored a
space of knowledge sources that, when integrated with task-independent memory retrieval
mechanisms, may increase task performance across a variety of problems in complex
domains. As described in Section 7, we plan to further explore this space, with respect to
both episodic and semantic memory mechanisms, in extensions X2 and X4.

6.2 Combating Computational Intractability

While we are striving to improve our understanding of comprehensive functionality (R2),
however, we must simultaneously maintain computational efficiency, scaling to large
stores of knowledge over long agent lifetimes (R4). Our analytical and empirical work to
date demonstrates that the fundamental computational problems facing memory
retrievals, while practically efficient for many use cases, are unbounded and seemingly
intractable in the general case for large stores of knowledge. To combat this finding, we
plan to simultaneously investigate numerous paths.
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Figure 8. Preliminary Experimentation with Parallel Semantic Matching

For inspiration we can look to the human brain, the sole exemplar of a generally intelligent
cognitive architecture, which employs massive parallelism across its network of more than
a hundred billion neurons. Thus, one natural path for exploration is the degree to which
components of episodic and semantic retrieval processes lend to highly concurrent
algorithms.

The most recent and directly applicable work in this realm was done by Douglass and
Myers (2010), in which they applied the highly concurrent, message-passing Erlang
language to calculation of ACT-R chunk activation updates over a very large store of
semantic knowledge. Their empirical results demonstrated that concurrent processing
yielded significant improvements in retrieval time, converting a crucial process from
quadratic growth with respect to the number of semantic concepts to a linear growth.
Unfortunately, absolute retrieval times, given significant processing power (8 cores), were
still at least an order of magnitude greater than that required for generally intelligent
agents in dynamic domains (440 msec. over ~54k concepts, scaling to 10.9 sec. over ~1.3M
concepts) and it is unclear whether additional processing cores would significantly
improve this result.

We have also done preliminary empirical experimentation with parallelizing semantic
retrievals. Figure 8 presents unpublished retrieval time data, measured in milliseconds,
where we have modified our retrieval algorithm (see Appendix D) to divide search of
candidate semantic concepts across a variable number of computing cores (1-8). This data
represents a concurrent version of the “Failure Sweep” experiment presented in Appendix
F, wherein the retrieval mechanism is required to consider 50% of the semantic concepts
in the store, whose total size ranges from 5-8 million (labeled as “nodes” in the figure).
Note that this implementation was prototyped externally to Soar, in Java (versus Soar’s
native C++), and thus absolute retrieval times (~300-1000 msec.) are non-comparable with
those in other sections. When one core is utilized, we reproduce a linear growth in retrieval
time with respect to the number of semantic concepts (R220.996) and, although this is
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preliminary work, we did find that once sufficient parallel processing was available (~4
cores), retrieval time was approximately constant (~300-400 msec.). However, without
increasing the number of semantic concepts beyond the practical limits of main memory
(tens of gigabytes), we did not see a continually linear decrease in retrieval time from
increasingly adding cores. Additionally, as with Douglass and Myers, our absolute retrieval
times were not sufficiently efficient for dynamic environments.

These studies suggest that while parallelism may serve a role to ameliorate retrieval time
as knowledge stores scale, it is likely not a silver bullet at the grain size of large processors
with current memory architectures on commodity hardware and thus other avenues must
be explored.
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7. Future Work

In this section, we detail our plan for future work, as guided by our research methodology
(see Figure 7, a reproduction of Figure 1 presented in Section 3). We begin by discussing
our overall evaluation strategy, including describing and justifying a complex domain,
cognitive robotics, which we plan to utilize as a common evaluation test-bed. We then
present four extensions that will functionally enhance encoding, storage, and retrieval of
memories in Soar’s episodic and semantic memory modules, while efficiently scaling to
large stores of knowledge over long agent lifetimes. Finally, we present our proposed
timeline to complete this work.

7.1 Evaluation Strategy

One major challenge of our proposed work is there are no accepted benchmarks or metrics
for comparing task-independent memory systems in context of generally intelligent agents.
Thus, principled evaluation of the quality and progression of our work is a continuous
research goal in and of itself. Given this context, we have devised the following evaluation
strategy, which entails concurrently assessing our future work on two fronts, focusing on
the degree to which we improve satisfaction of requirements R2 (diverse, comprehensive
learning) and R4 (scaling to large bodies of knowledge).

With each proposed research extension, we first plan to develop focused benchmarks to
thoroughly characterize the computational requirements of our implementations, much as
we did with our prior work on episodic (see Section 4) and semantic (see Section 5)
memory mechanisms, such as to evaluate the degree to which we maintain reactivity in
complex, dynamic environments (R4). In addition, we plan to incorporate the following
complex domain, cognitive robotics, as a cumulative, thematic test bed across all
mechanism explorations, such as to characterize how our work contributes to task
performance within a complex environment. By qualitatively and quantitatively assessing
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Figure 7. Memory System Research Methodology
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agent performance across a number of tasks within this domain, we intend for this
evaluation component to serve as a measure of the degree to which we are improving
coverage of diverse learning mechanisms for generally intelligent agents (R2).

Cognitive Robotics

As depicted in Figure 9, we have been extending work on instructable autonomous agents
(Huffman, 1994; Huffman & Laird, 1995) as applied to cognitive robotics (Laird, 2009).
This is an especially interesting domain for memory research because it embodies all of the
characteristics of tasks and environments in context of generally intelligent agents (see
Section 2): not only do robots in real-world (C1) missions contend with dynamic (C2),
partially observable (C5), and stochastic (C3) environments, but computationally limited
(C6), autonomous agents controlling robots must contend with arbitrary tasks and
missions (C4) while incorporating into their reasoning and planning large amounts of
diverse knowledge from prior missions (C7) or databases, immediate state, rules of
engagement and doctrine, short- and long-term goals, as well as situated instruction from
other agents or humans.

In context of both simulation and physical robotics hardware, we plan to evaluate the
efficacy of memory mechanisms on large-scale scenarios inspired by search & rescue and
building clearing missions. These situations will involve a number of interesting
characteristics:

Environmental Complexity (C1). The agent will be situated in a building,
subdivided into many rooms, where adjacent rooms are connected via
doorways (see Figure 9, for instance). Rooms will contain numerous, diverse
objects with a variety of features (including physical properties, such as color,
size and weight, as well as more abstract properties, such as semantic
classifications) and relations (such as spatial location and orientation). Some
object properties will be shared amongst objects and some properties (in
isolation or combination) may be exploited to benefit task performance,
resulting in varying degrees of task-specific and task-independent ambiguity.

Red: Room 6 clear
</

Figure 9. Cognitive Robotics Domain
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Environmental Dynamics (C2). Properties of objects will change both as a
result of agent action, such as the agent physically moving the object, as well as
independently, such as a light going out due to severed power. As exemplified,
changes will occur at varying time scales.

Environmental Regularities (C3). Regularities in environmental complexity,
such as frequency of the occurrence of objects, and dynamics, such as object
detonation, will be parameterized, and thus regularities will exist that the agent
can detect, depending upon the capabilities of its cognitive mechanisms, and
potentially exploit to succeed in tasks.

Diverse Tasks (C4). The agent will be tasked with numerous problems.
Dependencies will exist in these missions, such that expertise in some tasks,
such as navigation, will affect performance in other tasks, such as retrieving a
particular object. Task goals will vary in temporal duration and complexity,
such that some objectives, such as “go to room X,” are simply defined and short-
term, whereas others will be long-term, such as “never go to room Y,” or
complex in definition, such as “avoid dangerous situations.”

Limited Interactions (C5). The building structure will be sufficiently complex
such as to introduce significant partial observability: the agent will not be able
to perceive objects or doorways in rooms outside its present context.

Limited Agent (C6). The agent will run on commodity hardware and make
decisions with respect to real-time input from its environment.

Extended Agent (C7). As the number of objects and rooms scale, the agent will
require a long lifetime in order to complete its mission objectives. The agent’s
existence will be continuous: a priori knowledge (preloaded from knowledge
bases) will only be supplemented by that which is learned from environmental
and task experience, which may include interactive instruction from human(s)
or other agent(s).

The types of tasks we plan to explore include task-dependent situational assessment (such
as to avoid environmental dangers and prioritize task progress), locating objects (work
that could apply to locating human victims in unsafe or disaster situations) and
manipulating objects (work that could apply to building maintenance or clearing, such as
during times of questionable structural integrity). As we explore the extensions discussed
below, the degree to which the agent improves performance in these tasks will empirically
evidence its increased coverage of diverse learning mechanisms (R2) while maintaining
reactivity to environmental dynamics given large stores of knowledge and a long agent
lifetime (R4).

Note that while we plan to implement our work on physical robots, our focus will not be on
low-level issues of motor control and perception, but instead on evaluating the degree to
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which highly functional memory mechanism lend to generally useful cognitive capabilities,
such as virtual sensing (reasoning about information not directly accessible to robot
sensors), management of goals (such as progress towards mission directives), and
generalization through categorization (such as by reducing human direction through access
to declarative stores of knowledge, including doctrine and ontological world data).

7.2 Functional Extensions

We now propose four extensions to our prior work that will functionally enhance encoding,
storage, and retrieval of memories in Soar’s episodic and semantic memory modules, while
efficiently scaling to large stores of knowledge over long agent lifetimes. As discussed in
Section 6.1, these explorations are motivated by shortcomings of our work to date,
particularly with respect to requirement R2, functional support for diverse, comprehensive
learning, and are intended to contribute to the following two research questions:

What aspects of agent experience should a task-independent memory
mechanism encode and store such as to functionally support performance across
a variety of tasks while maintaining reactivity to complex, dynamic
environments?

What task-independent regularities of agent experience can efficiently
supplement incomplete task-dependent knowledge to improve the expected
utility of retrieved memories in response to impoverished cues?

Extensions X1 and X2, respectfully, propose work in context of episodic memory and X3
and X4 deal with semantic memory. In each case, we are guided by our research
methodology (see Figure 7), and thus we present informative analysis related to the
intended exploration; our proposed approach and the theoretical commitments entailed; as
well as relevant projected evaluation metrics/experiments and data structures/algorithms.

X1. Semantic Pruning of Episodic Encoding

Analysis. As an agent explores its environment, contending with numerous tasks, episodic
knowledge increases with change in the agent’s representation of its present state (Laird &
Derbinsky, 2009). Concurrently, as the agent encounters facts about the world, its long-
term semantic knowledge grows with new conceptual and ontological information. Over
long agent lifetimes, these knowledge stores pose significant computational challenges
with respect to raw memory consumption, as well as the computation time required to
index and search this data.

Two cognitive theories inspire investigation as to how the human cognitive architecture
may functionally contend with these challenges. First, the weak version of the theory of
cognitive economy (Collins & Quillian, 1969; Collins & Loftus, 1975) suggests that details of
object instances need not be re-encoded at multiple levels of conceptual hierarchies. For
example, if an agent is newly taught that “birds have wings,” this information need not be
“copied” as a feature of previously encountered instances of birds, nor as new instances are
encountered, but instead may be inferred as a property of the hierarchical structure. The
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weak version of this theory does not preclude duplication of information, but suggests that
generalization through processing over distal hierarchies may lead to greater cognitive
utility than mass duplication of local features and relations. The second theory posits that
human episodic memory relies heavily on reconstruction (Williams & Hollan, 1981;
Kolodner, 1983b; Hassabis & Maguire, 2007); thus rather than simply recalling an episode
from a store of “snapshots,” previous experience is pieced together from disparate sources
as a form of information processing.

Theory. We plan to explore an episodic encoding policy optimization that shares surface-
level similarities with these theories wherein historic features and relations of long-term
semantic concepts in agent state are not directly encoded in episodic memory, but rather
only “pointers” to knowledge available within the semantic store. As an immediate
consequence, this proposed extension would reduce the amount of knowledge episodic
memory must manage, thereby improving storage and retrieval performance (R4). This
policy also requires that, upon retrieval, the agent must deliberately reconstruct certain
details on-demand from the present contents of semantic memory, if they are pertinent to
the current situation and task. Since the agent must rely upon current semantic knowledge,
which may have changed since episodic encoding, there is the potential for the agent to
incorrectly reconstruct the experienced situation, which may hold consequences for
present task performance.

Evaluation. A significant research question is the degree to which the computational
performance gains of this proposed policy will outweigh the potential for task performance
detriment when integrating the contents of two distinct long-term memory stores. In
addition to focused synthetic benchmarking to characterize space reduction and query
time improvement, we plan to incorporate this extension as an added variable in the
cognitive robotics experimentation, which will contextualize computation gains in task
performance degradation.

X2. Efficient Episodic Activation Bias

Analysis. Given the nature and function of a memory system, it is often the case that an
agent querying a memory mechanism is not able to specify a cue that uniquely
distinguishes one memory from another. In this situation, the memory mechanism must
attempt to “predict” (Anderson, 1990), based upon task-independent environmental, task,
and agent regularities, what memory will be most useful.

In context of semantic memory, a good set of these regularities has been flushed out in the
literature (Anderson & Schooler, 1991), as discussed in X4. However, given that we have
limited experience with artificial agents utilizing a task-independent episodic memory
system in complex tasks (Nuxoll, 2007), it is unclear whether this is a functionally
sufficient, let alone optimal, set of functions to bias an episodic retrieval mechanism. We
can, however, look to humans, who appear to incorporate multiple, complex forms of bias
in retrieval of episodic and declarative memories, including emotion (Dolan, 2002) and
central arousal (Davis & Whalen, 2001).
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Theory. While significant work must be done to determine which specific episodic bias
functions are functionally required for generally intelligent agents, we plan to begin the
investigation by understanding how to efficiently support two classes of retrieval bias,
representing the extremes with respect to memory granularity, within a task independent
episodic memory mechanism: activation of individual structures within an episode/cue
and activation of entire episodes.

The first class supports work such as that by Nuxoll (2007), in which he showed some
evidence that incorporating the working memory activation (Chong, 2003; Nuxoll et al,,
2004) of cue features, a measure relating to procedural memory activity, as a bias may
contribute to improved task performance on certain retrievals. The second class supports
recent work on integrating appraisal theory as a form of emotional modeling in a general
cognitive architecture (Marinier et al., 2009).

By making progress on understanding the computational requirements (R4) of these two
classes of episodic activation bias, we will support future experimentation to discover the
optimally functional set (R2).

Evaluation. As an initial evaluation, we plan to exhaustively benchmark both classes of
activation on synthetic data sets, as we did with our prior work with semantic memory
activation (Derbinsky et al., 2010). Additionally, we will implement and evaluate task-
dependent appraisals within the cognitive robotics domain as a demonstration of real-
world use, and an initial exploration of task benefit. For instance, consider a search &
rescue agent exploring and assessing rooms within a building for individuals requiring
assistance. As it encounters rooms, it will associate with its experience a potentially
complex set of appraisals, including goal relevance and novelty. After exploring the scene,
when planning how to expend its time and energy, we hypothesize that episodic retrievals
biased by these measures, driven by task-dependent control knowledge, will result in
improved task performance over an unbiased baseline.

X3. Automatic Semantic Encoding

Analysis. Given a sequential presentation of instances, some important conceptual findings
include useful clusters of the instances into categories, an intensional definition for each
category, and a hierarchical organization for the category (Michalski & Stepp, 1983). This
type of conceptual information about the world supports a number of important cognitive
functions, including linguistics, communication, and inference (Davidsson, 1995).
Unfortunately, incremental formation of concepts is a complex problem that has tasked
and, in the general case, eluded the machine learning community for decades (Gennari et
al,, 1989).

Anderson and Matessa (1998) describe an appealing approach to categorization, a subset
of the problem of conceptual clustering, wherein incremental accumulation of conceptual
information is not directly served by an architectural primitive, but rather emerges from
problem-solving within ACT-R (Anderson et al., 2004), a general cognitive architecture
with sufficient learning capabilities to capture relevant regularities in perceived instances.

27 September 2010 45



A crucial component of Anderson and Matessa’s model is the automatic encoding of
declarative information. The ACT-R theory posits an architectural semantic encoding
policy, in which changes to module buffers, including perception and goals, results in
automatic storage of new declarative knowledge. This encoding policy is computationally
cheap, as no complex decisions are made to decide the “best” elements to encode, but relies
on task knowledge to construct cues and comprehensive activation bias during retrieval to
sift through and select the most pertinent knowledge chunk amongst potentially large
amounts of declarative knowledge.

Theory. We plan to explore and evaluate a small space of automatic, task-independent
semantic encoding policies in Soar, which will supplement its learning capabilities (R2).
The base policy will emulate that of ACT-R: all changes to agent state constitute new
semantic knowledge. We also plan to integrate temporal stability, the length of time a
structure persists, which may help distinguish transient structures from those more
permanent in nature, and situational focus, which may serve as task-independent measure
of task-dependent importance, as heuristics by which to ameliorate computational space
burden (R4).

Mechanism. We plan to extend the episodic working memory graph (see Section 4) to
incrementally summarize the distinctiveness of concept features that have occurred in the
agent’s representation of state. For instance, if a particular concept always has a particular
feature “color,” then this structure would have a relatively high measure of temporal
stability.

We also plan to incorporate Soar’s working memory activation (Chong, 2003; Nuxoll et al,,
2004) as a measure of situational focus. This process maintains, for each structure in
working memory, a measure of procedural activity, which is a summary of the prior history
of rules that have tested or created the structure.

Evaluation. As an initial evaluation, we plan to compare memory required to store semantic
knowledge and time to retrieve memories using focused, synthetic data sets. We also plan
to survey the literature (such as Anderson & Matessa, 1992) for existing categorization
data sets on which we can further evaluate our space of encoding policies. In context of
cognitive robotics experimentation, we plan to compare, with respect to memory
requirements and task performance, the efficacy of hand-coded semantic knowledge, such
as representations of persistent room organization and stable object features, with those
stores produced by our space of automatic encoding policies.

X4. Efficient Semantic Activation Bias

Analysis. Anderson and Schooler’s rational analysis of declarative memory led to empirical
evidence that for a memory system to optimally estimate the odds that a particular
memory will be needed, it likely requires sensitivity to particular sub-symbolic, structural
regularities in the environment (Anderson, 1990), including a comprehensive treatment of
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concept retrieval history (Anderson & Schooler, 1991) and associations with present
context (Schooler & Anderson, 1997).

The ACT-R cognitive architecture (Anderson et al., 2004) declarative memory model
implements a comprehensive activation suite, including retrieval history (termed base-
level activation) and context (termed spreading activation). This activation functionality is
crucial to numerous cognitive models, but has been shown not to scale to large semantic
stores (Douglass et al.,, 2009; Douglass & Myers, 2010).

Theory. We plan to investigate and evaluate computational methods for incorporating base-
level and spreading activation functionality into a semantic retrieval mechanism that scales
with large stores of knowledge. This will extend our previous work on semantic activation
bias functions (see Section 5), complimenting the literature’s existing understanding of
activation functionality (R2) with a new understanding of scalable methods (R4).

Mechanism. Douglass and Myers (2010) have shown preliminary empirical evidence that
parallelism can significantly improve spreading activation calculation in large semantic
stores. However, even massive concurrency did not bound their calculations sufficiently for
autonomous agents to remain reactive to dynamic environments. Thus, we plan to formally
and analytically evaluate approximation methods, including bounding the effects of
activation updates (Berthold et al., 2009), such as degree of fan-out, and allowing limited
error into high-dimensional, nearest-neighbor matching (Andoni & Indyk, 2008).

Evaluation. To evaluate these activation function variants, we plan to measure and balance
efficiency and functionality. First, we will measure the degree to which the computational
resource usage of these algorithms, including average/maximum retrieval time and
indexing data structure space, scales to large semantic stores, such as the size of WordNet
(Miller, 1995), Cyc (Lenat, 1995), or SUMO (Niles & Pease, 2001). We plan to formally
characterize these growth rates, as well as empirically evaluate usability in large synthetic
and real-world data sets.

Second, as we explore approximations to theoretical activation bias functions, we will
evaluate the degree of model fidelity degradation, as measured by apposite experiments in
the literature. For example, one well-studied problem, applicable to contextual activation
spreading, is the Word Sense Disambiguation (WSD) task (Navigli, 2009). A particular
formulation of this problem measures WSD accuracy given both a set of input words, each
potentially contributing to context, and a machine-readable dictionary, such as WordNet
(Miller, 1995). We plan to make use of existing WSD algorithms in this space, such as Lesk
(Lesk, 1986) and those using semantic networks (Tsatsaronis et al., 2007; Tsatsaronis et al.,
2008), as task performance baselines, as well as comparisons to predictions made by
theoretical activation models, which will serve to characterize the absolute degree of model
fidelity, taking into account relative loss of task functionality.

We also plan to investigate the role semantic retrievals play in the cognitive robotics
domain, and how activation bias impacts agent behavior, especially when we introduce
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approximate algorithms. For instance, semantic memory is a likely candidate for storing
semi-static task experience, such as symbolic map structures. We plan to compare how well
the agent is able to contend with large, complex maps when this type of information is
retrieved from Soar’s short-term working memory, its contextual episodic memory, and its
associative semantic memory. Computationally, we expect differences in storage space and
retrieval time and that with large environments with many semantic structures, short-term
memory retrievals will not scale. Qualitatively we hypothesize that differences in biases
between the retrieval algorithms for these mechanisms will lead to dominant strategies
over multiple tasks in this complex domain. We also plan to investigate the degree to which
the Word Sense Disambiguation results can apply to situated instruction work, possibly
resulting in the reduction of the need for specificity in instruction and the increased
expressivity of the vocabulary.

Summary

Table 5 (reproduced from Table 2 in the introduction to this document) summarizes the
proposed extensions both with respect to memory system organization (episodic vs.
semantic; encoding/storage vs. retrieval) and how we will contribute to satisfaction of the
requirements of memory systems for generally intelligent agents.

Table 5: How Proposed Extensions Relate to Memory System Organization and Requirements
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Each extension will build on prior work on the episodic and semantic memory systems in
Soar, and will thus satisfy requirements R1 (online/incremental learning), R3 (diverse
representation), R5 (effective access), and R6 (task independence). In addition, each will
incrementally add to supporting a diverse, comprehensive set of learning mechanisms (R2)
that scale with large stores of knowledge over long agent lifetimes (R4).

7.3 Timeline

In this section we discuss our timeline for the proposed research and evaluation in this
thesis.

We first note that we will not have to develop the software and hardware infrastructure for
the cognitive robotics domain from scratch, but will instead build on existing work and
collaborate with others as a part of a larger project. Consequently, we do not expect that
our proposed evaluation strategy will significantly hamper our research efforts, nor affect
our timeline.

Next, we admit that there is a moderate amount of interplay within our proposed
extensions. For instance, an automatic semantic encoding policy (X3) will likely impact the
amount of knowledge with which the retrieval mechanism must contend (X4) and the
degree to which episodic retrieval efficacy is degraded given semantic pruning (X1). While
these interdependencies will ideally lend to interesting conclusions in the final evaluative
synthesis, we recognize the potential for danger in context of a timely and decomposable
thesis progression. We have therefore devised the following serialized schedule that
provides for modular research progress, while incrementally preserving many of the
cumulative interdependencies of the thesis.

As demonstrated in our prior work, the semantic bias (X4) algorithmic component relies
minimally only upon characterizing the size and composition of the knowledge store to
study. While this is also true of episodic bias (X2), the relative complexity of memory
representation (a semantic key-value set versus an episodic graph) and amount of prior
evaluative work (significant for semantic, nearly non-existent for episodic) make efficient
episodic bias a significantly more difficult problem. Thus, as previously detailed, we plan to
begin with X4. For evaluation, we plan to begin with synthetic preloaded datasets (as
demonstrated by our initial work in Section 5), deliberately encoded knowledge within the
cognitive robotics domain, and apposite studies from existing literature, such as the Word
Sense Disambiguation task.

To enhance our evaluation of X4, the natural next step is to investigate stores, across
numerous tasks, produced whilst exploring the space of automatic semantic encoding
policies (X3). While we do not expect that we will have to overcome significant algorithmic
challenges to implement these encoding mechanism modifications, we do see the potential
for this work will yield significant added functionality to Soar agents, result in significant
synergies with X4, and lend to a more holistic inspection of the semantic memory system.
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Given efficient semantic activation bias (X4) and an automatic semantic encoding policy
(X3), we can independently proceed to either episodic encoding (X1) or retrieval (X2). We
expect that some of the algorithmic components of retrieval will transfer from the semantic
work (such as concurrency and approximation infrastructure), but that there will still be
very difficult problems with which to contend. In contrast, the encoding component is
likely to be relatively straightforward algorithmically, but may pose a significant evaluation
challenge in order to characterize the policy over numerous tasks given a space of semantic
knowledge defined via X3 and X4.

If extensions X3 and/or X4 require significantly more time than planned, the final work
segment lends a natural path to conclude this thesis. Semantic pruning of episodic encoding
(X1) will yield an interesting exploration of the interplay between semantic and episodic
mechanisms, while the episodic bias (X2) extension is most easily and cleanly detached for
future work.

October 2010 - January 2011
* Efficient Semantic Activation Bias (X4)

January 2011 - April 2011
* Automatic Semantic Encoding (X3)

April 2011 - September 2011
* Semantic Pruning of Episodic Encoding (X1)
» Efficient Episodic Activation Bias (X2)

October 2011 — March 2012
* Thesis data analysis, writing, and defense.
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Appendix A. Memory Model Space

This appendix details an initial characterization (Derbinsky & Gorski, 2010) of the space of
memory systems, borrowing heavily from and generalizing Nuxoll’s breakdown of the
space of episodic memory systems (2007). We define a memory system implementation as
a commitment to features from within the space defined by these dimensions, represented
as (encoding, storage, retrieval).

A.1 Encoding

Initiation - Initiation encompasses the event conditions that trigger the encoding and
storage processes. These events may condition upon fixed architectural characteristics
of state (such as a temporal frequency) or may be accessible to agent control
knowledge.

Determination - Once initiated, the memory mechanism selects features of agent state
(or derivation thereof) that compose the knowledge to be stored, as well as any
additional context (temporal, spatial, etc) that may also be associated with the
knowledge.

A.2 Storage

Granularity - Stored experience varies with the grain size at which knowledge can
accessed and modified. This may range from minute (such as the symbol level), to
moderate (an episode), to coarse (such as the entire knowledge store).

Dynamics - Knowledge in the memory system may change over time, such as to bias
retrieval or forget knowledge. The mechanisms that cause this change may be fixed,
condition upon agent knowledge, or deliberate agent action.

A.3 Retrieval

Accessibility - Experience encoded within the memory system may vary in the degree
to which it is exposed to other architectural mechanisms, such as to maintain overall
agent reactivity. For instance, a declarative long-term memory may allow for
enumeration of all stored memories.

Initiation - Initiation encompasses the event conditions that trigger the retrieval
process. As with encoding initiation, these events may condition upon fixed
characteristics of state or may be accessible to agent knowledge/control.

Cue Determination - Once initiated, the memory system composes agent state,
knowledge, context, and/or [possibly inaccessible] meta-data to select or create a
retrieval cue.

Selection - When supplied a cue, the memory system implements a policy for how
stored knowledge is matched with respect to the cue, which may be restricted by time,
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computation, and/or number of results, as well as include bias from agent state,
context, and/or meta-data.

* Result - When the memory system selects stored experience for retrieval, it may

arbitrarily represent the knowledge, associated context, and aspects of the retrieval
process, such as match quality, for agent inspection.
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Appendix B. Detailed Episodic Memory Evaluation

This appendix contains detailed information about our initial evaluation of episodic
memory in Soar, termed Soar-EpMem (Derbinsky & Laird, 2009), including the evaluation
domain, as well as performance models of cue matching and reconstruction operations.

B.1 Evaluation Domain

TankSoar, exemplified in Figure B1, is a pre-existing domain that has been used extensively
in evaluating other aspects of Soar and was used in the original episodic memory research
in Soar (Nuxoll & Laird, 2007). In TankSoar, each Soar agent controls an individual tank
that moves in a discrete 15x15 two-dimensional maze. Agents have only limited sensing of
the environment and their actions include turning, moving, firing missiles, raising shields,
and controlling radar. A TankSoar agent has access to a rich set of environmental features
through its senses, including smell (shortest-path distance to the nearest enemy tank),
hearing (the sound of a nearby enemy), path blockage, radar feedback, and incoming
missile data.

TankSoar includes an agent named mapping-bot that builds up an internal map of the
environment as it explores. The mapping-bot agent’s working memory contains about
2,500 elements. Over 90% of these elements comprise a static map of its environment. A
large proportion of the remaining WMEs (usually 70-90%) are related to perception and
they typically change within one episode. For the experiments described below, a new
episode was stored every time an action was performed in the environment, which is
approximately every primitive decision cycle in Soar. The properties of this agent,
especially the large working memory and the large number of WMEs changing per episode,
make TankSoar an atypically stressful domain for episodic memory experimentation.

The tests were run on an Intel 2.8GHz Core 2 Duo processor with 4GB RAM. The Soar-
EpMem episodic store was managed using version 3 of the SQLite in-process relational

Figure B1. TankSoar
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database engine. The tests described below involved one million mapping-bot episodes,
averaged over ten trials.

B.2 Cue Matching Evaluation

To compare Soar-EpMem cue matching performance with theoretical bounds, we
developed the following model to reflect the effects of operational algorithms and data
structures:

Cue Match = DNF + Interval Search + Graph Match
DNF = (X1)(log2[ U *R ])(L)
Interval Search = (X2)(1/T)(Distance)(4)

The constants in the equations (X1, Xz) reflect linear scaling factors for a given computer.
To derive these values for our experimental setup, we performed 100 isolated executions
of primitive operations (DNF and Interval Search) on data collected from 10 trials of
mapping-bot data at 10 time points (100K, 200K, ... 1M). We collected the necessary
episode statistics (described below) and performed linear regressions to fit data points for
15 different queries. Low performance timers (resolution was 1us) caused most model
noise.

The Cue Match operation comprises DNF construction and Interval Search. The former is
linearly dependent upon the logarithmic growth of the average number, U, of historically
unique internal and leaf nodes multiplied by R, the total number of stored intervals, as well
as linearly dependent upon L, the number of literals associated with the cue nodes. In our
tests (see Figure B2), we found X1 to be 4.33pus (R2=0.996). In experiments with mapping-
bot to one million episodes, results depended greatly on the cue. For all cues that did not
reference “squares” on the agent’s internal map, DNF operation time was constant and
below 8 ms. Cues containing references to map “squares” (and thus referring to over 250
underlying structures) brought this upper bound to 55.1 ms.

1.2

y = 1E-06x + 0.0117
R? =0.9888

Interval Search Operation Time (s)

0 200000 400000 600000 800000

(1/T7)(Distance)(a)

Figure B2. Cue Matching DNF Regression Data
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The Interval Search operation is expressed as a proportion of relevant cue node intervals. T
represents the total number of episodes recorded. Distance represents the temporal
difference between the current episode and the best match. 4 represents the total number
of intervals relevant to the cue. Intuitively, the farther back in time we must search for an
episode, the more intervals we must examine. This ratio could be re-written as the product
the minimal relative co-occurrence probability of the cue nodes, and the total number of
changes experienced to date by these cue nodes. In our tests (see Figure B3), the X»
constant was 1.29ps (R?=0.989). We found absolute operation times depended greatly on
the supplied cue. For cues that did not compel distant searches, Interval Search was
constant with an upper bound of 2.5 ms. With cues crafted to force a linear scan of the
episodic store, time increased linearly to a maximum of 1.03 seconds over one million
episodes.

Since the linear factors, L and 4, grow proportionally to changes in agent working memory,
the first phase of Soar-EpMem cue matching achieves the lower bound of growing linearly
with agent changes. The Graph Match operation, however, is much more difficult to
characterize. CSP backtracking depends upon cue breadth, depth, structure (such as shared
internal cue nodes), and corresponding candidate episodes, but can be combinatorial in the
worst case (though our two-phase matching policy attempts to minimize this cost). We
have not extensively evaluated this component, but we expect a studied application of
heuristic search will effectively constrain graph- match in the average case.

B.3 Episode Reconstruction Evaluation

To compare Soar-EpMem reconstruction performance with theoretical bounds, we
developed the following model to reflect the effects of operational algorithms and data
structures:

Reconstruction = RI-tree + Collect
RI-tree = (X3)(logzR)
Collect = (X4)(M)(1 + log2U)

0.06
y = 4E-06x - 0.0001

R? = 0.99616
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Figure B3. Cue Matching Interval Search Regression Data
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To validate our model we performed 100 isolated executions of primitive operations (RI-
tree and Collect) on the same data collected for cue matching (10 trials, mapping-bot, 10
time points from 100K to 1M episodes). We collected the necessary statistics (described
below) for 50 episodes selected randomly (5 per 10,000 episodes through the first 100,000
episodes of execution) and performed linear regressions to fit data points.

Total time for episode reconstruction is the sum of two operations: RI-tree and Collect. RI-
tree refers to the process of extracting pertinent intervals from the Relational Interval Tree.
The logarithmic dependent variable, R, refers to the total number of ranges in the RI-tree
structure. In our experiments, the X3 constant was 2.55us (over 70% R2). After one million
episodes, we recorded the upper bound of RI-tree operation time as 0.1 ms.

The Collect operation refers to cross-referencing pertinent episode intervals with
structural information in the Working Memory Graph. This process depends upon the
average number, U, of historically unique internal and leaf nodes, as well as the number of
elements, M, comprising the episode to be reconstructed. With mapping-bot we regressed
an X4 value of 1.6pus. Because episode size does not vary greatly in mapping-bot (2500-2600
elements, typically), the dominating linear factor, M, highlighted noise in the experimental
data and thus R was 73%. After one million episodes, we recorded an upper bound of
22.55 ms for the collection operation with episodes ranging from 2521-2631 elements.

If we assume a constant or slowly growing average episode size, the M factor can be
considered a constant and thus Reconstruction becomes the linear sum of logarithmic
components R and U. Both R and U increases result from changes in agent working
memory. Thus, under these assumptions, Soar-EpMem episode reconstruction achieves the
lower bound of growing linearly with agent changes.
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Appendix C. Semantic Memory Retrieval Formulation

This appendix contains detailed information about our formulation of the semantic
memory retrieval problem (Derbinsky et al., 2010), including a mapping to the ACT-R
declarative memory module and extensions for a class of activation bias.

C.1 Basic Problem Formulation

We define a semantic memory store as a set of elements. A semantic element is decomposed
into a set of symbolic augmentations. For example, consider the following example
semantic store, in which the letters A-D identify elements and lower-case Greek letters
represent augmentations:

A: {O(, Bl &, (p}
B: {q, €}

C: {v}

D:{y, ¢}

We define a symbolic retrieval cue as having a required positive component and an optional
negative component, each of which is expressed as a set of symbols (corresponding to the
augmentations of a particular semantic store). For instance, consider the following
retrieval cue, corresponding to the example store above, consisting of both positive (+) and
negative (-) components: +{a, €}, —-{y}. The positive set specifies augmentations that an
element must contain, and the negative set those that it must not contain.

Given a semantic store and a cue, we define the result of a semantic retrieval to be a single
element from the store, including all augmentations, that satisfies the constraints
represented by the cue. Thus, the result of the example cue and the example store would
either be element A or B (with respective augmentation set {q, 3, €, ¢} or {a, €}). A retrieval
is considered a success if there exists a result (as with our example) and a failure otherwise.

C.2 Mapping to ACT-R DM

We now map the ACT-R DM to our abstract formulation. First, without loss of generality,
we interpret the chunk type as a slot-value pair. Next, since we are considering qualitative
matching (equality is defined as symbolic equivalence), each distinct slot-value pair can be
equivalently represented as a single, composite symbol (by concatenating the slot label and
value with a unique separating character). Since slot-value pair order is arbitrary, a chunk
instance can be equivalently represented as a set of [composite] symbols. In ACT-R, all
chunks of a given type must contain values for the same set of slots and a chunk type can
only have one slot of a given label; without loss of generality, we eliminate both of these
constraints. Given the analysis above, a chunk maps to a semantic memory element, and
slot-value pairs to augmentations.

We apply a similar analysis to semantic retrieval requests, with distinct slot-value pairs

compressed to a single composite symbol. If we require that equivalent slot-value pairs in
chunks and retrieval requests resolve to the same composite symbols, then the set of
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positive tests form the positive cue component and the negative tests the negative
component.

With this analysis, we claim that the symbolic ACT-R DM retrieval interface is an instance of
our problem formulation. Thus, results from our work extend to ACT-R models, and any
other system that can be similarly mapped.

C.3 Extension: Activation Bias

To integrate activation bias in our problem formulation, we extend our definition of a
semantic memory element to include a numerical activation value, as exemplified below by
the numbers in square brackets:

A[1.41]:{a, B, & @}
B[1.73]: {a, €}
C[3.14]: {y}

D [2.72]: {v, ¢}

We refine our previous definition of a retrieval result as an element from the DM, including
all augmentations, that satisfies the constraints represented by the cue and has the
maximal activation value. Given the example cue (+{«, €}, —-{y}) and this expanded DM, the
result is now unambiguously B (and its associated augmentations), as it has a greater
activation value than A.
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Appendix D. Supporting Basic Semantic Memory Retrievals

This appendix discusses indexing structures and processes to efficiently support a large
class of symbolic semantic memory retrievals, without consideration of sub-symbolic
activation, accompanied by a brief computational complexity analysis. We decompose our
description into the required positive cue component, followed by the negative.

D.1 Positive Cue Component

To review, the positive cue component for symbolic semantic retrievals is a non-empty set
of augmentations that an element must contain. To assist in our analysis, we define R, as
the elements that contain an augmentation p and, accumulated over all p in P, R to be the
bag of candidate elements (which may contain duplicates, if an element contains more than
one augmentation, p, in P).

Indexing

Building on this prior work, the primary indexing structure for our mechanism is an
inverted table of semantic elements, combined with cached frequency statistics. The
structure contains a sorted list of each augmentation, p, in the semantic store, each paired
with a sorted list of elements in which they are contained as well as the size of this list, R).
We note that this structure roughly doubles the size of the store and can be updated very
efficiently as the store changes. Consider the following index over the example store in
Appendix C:

a (2): [A B]
B (1): [A]

y (2): [C, D]
£ (2): [A B]
¢ (2):[A D]

Algorithm

To retrieve based only on the positive cue component, we first generate a sorted list, Q, of
all augmentations p in P, keyed ascending on Ry, which requires |P| queries on the inverted
index. Q represents a specialized query plan, sorted in ascending order of candidate
element list size. With the example positive component above, Q is either [o,] or [B,a] (as
R« = Rp), and we use the former for the remainder of this analysis.

Next, we pop the first augmentation from Q () and retrieve a pointer, w, to the head of the
element list in the inverted index (initially referring to the first element, A). Note that since
this list is updated incrementally with changes to the semantic store, we do not have to
compute this list in response to the query. Iterating over the remaining augmentations in Q
([BD), we verify, using the original store, that w satisfies all remaining positive constraints.
If so, return w and success. Otherwise, increment w to point to the next element in the
inverted index and retry verification. If no element successfully verifies, the retrieval is a
failure.
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Analysis

In the worst case, this retrieval mechanism grows linearly with |E|. However, the small
amount of indexing and query optimization bounds element iteration to min(Rp), the set of
elements containing the most selective positive query augmentation. Furthermore, we only
need to fully examine this list in the failure case.

D.2 Negative Cue Component

The negative cue component for symbolic semantic retrievals is an optional set of
augmentations that a retrieval must not contain.

We have struggled with how to efficiently support this type of constraint given our
problem formulation. What makes this component difficult is that given a large DM with a
sparse distribution of augmentations, it can be prohibitively expensive to maintain an
index of the elements not containing an augmentation, analogous to issues surrounding the
closed-world assumption and negated conditions in production matching (Doorenbos,
1995).

Initial Integration

Currently, we integrate this functionality with the positive cue component above by
special-casing negative augmentations. First, |R’s|, the number of candidate elements that
do not contain a particular augmentation n, equals (|E| - |Rx|), the total number of elements
less the number of elements that do contain the augmentation. This quantity can be
computed efficiently and used to order Q with negative augmentations. Second, because we
cannot efficiently enumerate Ry, w is initialized as the head of the list of the first positive
augmentation in Q. Finally, when verifying a candidate element, we simply invert the result
of the set-inclusion query on E.

Analysis

Using this approach, our mechanism loses a major performance benefit. This forfeiture
arises when there exists an augmentation in the negative component that is more selective
than any positive component augmentation, which is probably not uncommon. While we
are theoretically able to integrate this functionality, we have neither implemented nor
evaluated this work empirically in Soar, and plan to address this deficiency in the future.
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Appendix E. Supporting Efficient Activation Bias

This appendix first defines the class of activation update processes we can efficiently
support, and then discusses how we achieve this functionality.

E.1 Efficient Activation Bias Updates

Just as semantic memory must support efficient updates to elements and augmentations, so
too must it support efficient updates to activation values. In this context, for large stores,
we propose that an activation value update process must be locally efficient. An activation
update process is locally efficient if it satisfies two properties: (1) the update can affect the
activation value of at most a constant number of elements and (2) updating the activation
value of an element takes time strictly sub-linear in the number of semantic elements.

The locally efficient activation update process we implemented in Soar is a straightforward
mechanism to bias retrievals towards recency. After each successful retrieval, the
activation value of the retrieved element is updated to be one greater than the previously
largest activation value. This update process is local, as it only changes a single element per
retrieval, and it is efficient, as the largest activation value can be cached to avoid any search
over E.

In ACT-R, chunk activation includes retrieval history (base-level), current context
(spreading), partial matching, and noise. Both the base-level approximation and permanent
noise computations appear to be local, so it should be possible to extend our approach to
cover those components. However, transient noise, partial matching, and spreading
activation appear to be global to the elements of the store, which suggests significant
further theoretical and engineering research are necessary to develop locally efficient
mechanisms. Douglass and Myers (2010) have shown initial evidence that highly
concurrent semantic networks may afford significant performance gains for global updates.

E.2 Efficient Support

The most direct method of integrating activation values in our efficient algorithm is to sort
the candidate list (w) by activation values on demand. This approach, henceforth referred

to as Scheme I, suffers from retrieval times that are always dependent upon augmentation

selectivity, as the candidate list must be fully computed to be sorted.

Another method of integrating activation values, Scheme II, is to maintain, for each
augmentation, an element list sorted by activation value. Thus, w is sorted in order of
activation, independent of augmentation selectivity. However, the time required for
updating activation values is dependent upon the number of different augmentations an
element can have (its augmentation cardinality), and for large cardinalities, this cost can be
prohibitive.

Our approach to integrating activation values combines these schemes by exploiting an

assumption that most elements will have “small” augmentation cardinality. Given this
information, we explain how we can extend our implementation to yield efficient retrievals
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and then we validate our assumption empirically by studying three large, commonly used
knowledge bases.

Our Approach

If an element has small augmentation cardinality, Scheme II is efficient, independent of
semantic store size. If few elements must be sorted per retrieval, Scheme I is efficient,
independent of element augmentation cardinality. To resolve this tension between
augmentation cardinality and element selectivity, we apply these schemes on a per-
element basis: we apply Scheme Il when an element has small augmentation cardinality,
and otherwise apply Scheme I. What we describe here are the data structure modifications
and additional processing necessary to efficiently implement this split strategy.

First, we introduce a threshold parameter, t, which represents a small value of
augmentation cardinality. By default, we integrate activation bias as described in Scheme II
above. However, if the augmentation cardinality of a particular element is greater than ¢,
we associate a one-time special “infinity” (oo) activation value with all its augmentations
and maintain a separate list associating the element with its activation value, per Scheme I.
For instance, if t=3, we would have a list wherein [A=1.41] and our inverted index would
contain the following information:

a (2): [A=0, B=1.73]

B (1): [A=0o]

vy (2): [C=3.14, D=2.72]
£ (2): [A=, B=1.73]

@ (2): [A=00, D=2.72]

By default, an update to an element’s activation value will involve updating a small number
of references (<t) throughout the inverted index. For elements with augmentation
cardinality greater than ¢, such as A, we need only update this value once, thereby bounding
the update to constant time and addressing the weakness of Scheme II.

During retrieval, as we are populating the list of augmentations, @, which is sorted by
activation level, we may now encounter one or more infinite activations at the head of the
list. If so, we perform a lookup for its true activation level and execute insertion sort into a
second, special list, Q. We then merge Q and @’ to form our query plan. Notice that if the
size of Q' is small (i.e. few elements have augmentation cardinality greater than t), this
process is cheap and independent of augmentation selectivity, the weakness of Scheme 1.
Thus, if we can select an appropriate value of t, we will achieve efficient activation bias
support.

Validation

To validate that our split strategy works well on real data sets, we studied three large,
commonly used knowledge bases (KBs): SUMO (Niles & Pease, 2001), OpenCyc (Lenat,
1995), and WordNet (Miller, 1995). For each KB, we extracted the number of features of
each named entity. Each distribution was unimodal and exhibited strong right skew,
suggesting that while most elements had a similar feature size, there were rare cases with
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exceptionally large cardinalities. Then, we sampled from these distributions to form
synthetic data sets that were reasonably large (5040 elements) and empirically valid in
augmentation cardinality. We then collected empirical retrieval data, summarized in Table
D1, showing that for each KB there was a range over the value of t that optimally balanced
the performance effects of cue selectivity and augmentation cardinality. For two of the KBs,
we could efficiently employ Scheme Il above for more than 99% of elements, versus only
about 93% for the SUMO data set.

Important components of this analysis for future examination are (1) automatically
selecting a value of t for a given DM and (2) tuning this value online for changing DM
contents. As to the former, we see in Table E1 that the optimal threshold typically covers
greater than 90% of the elements using augmentation cardinality, but that value is not
constant across data sets. Further analysis of the KBs may uncover why this is the case and
suggest better factors for prediction. As for the latter, we expect that caching t in indexing
structures will allow the algorithm to adapt in real time, while maintaining efficient
retrievals.

Table E1: Optimal Thresholds.

Data Set Optimal ¢t Range Element Coverage
SUMO 50-70 92.78 - 93.86%

OpenCyc 40 - 60 99.17 - 99.74%

WordNet 20-40 99.50 - 99.90%
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Appendix F. Detailed Semantic Memory Evaluation

In this appendix we detail the evaluation of our implementation of semantic memory (see
Appendices D & E). We implemented our data structures and algorithms as the Semantic
Memory long-term, symbolic memory system in the Soar cognitive architecture (Laird,
2008). We used version 3 of the SQLite in-process relational database engine to manage the
semantic store and all experimental results were run on a 2.8GHz Core 2 Extreme
processor with 4GB of RAM.

Our final evaluation spans two data sets: (1) the WordNet 3 lexicon and (2) a scalable
synthetic benchmark of our design. WordNet offers a large, ecologically valid knowledge
base with which we can compare to previous results in this space (Douglass et al., 2009).
Our synthetic dataset offers us the ability to exhaustively benchmark our retrieval
mechanism on arbitrarily large semantic stores.

F.1 WordNet

As with Douglass et al. (2009), we used the WN-LEXICAL WordNet 3 data conversion
(Emond, 2006). The data set has over 820K chunks, which includes over 212K word/sense
combinations. Once imported, Soar’s semantic store, including all indexing structures, is
about 400MB.

Our first experiment was to verify (a) that retrieval time was independent of augmentation
selectivity and (b) that the activation bias was processed efficiently in under-specified cues.
We performed semantic retrievals on 100 randomly chosen, single-augmentation cues,
averaged over 10 trials. Retrieval time was 0.1887 msec. each (0.0216 std. deviation).

Our next experiment focused on larger cues. We randomly chose 10 nouns and formed a
cue from their full sense description. Retrieval time was an average of 0.2973 msec. over 10
trials each (0.0108 std. deviation).

Douglass et al. (2009) used a derived subset of the WN-LEXICAL dataset, so direct
replication of their work is difficult. They reported retrievals of about 40 msec. with cues of
1-4 augmentations on a declarative memory with about 232.5k chunks. Our results show
100x faster retrievals on a comparable set of cues scaling to a 3x larger DM.

F.2 Synthetic Data

In addition to running on a known data set, we tested our implementation more
exhaustively to measure how it scales with much larger semantic stores. We developed a
scalable, synthetic dataset generator and, in Table F1, we list statistics of the data sets we
used as they scale with k, the size control parameter:
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Table F1: Synthetic Statistics

k Elements Store Size (MB)
7 5,040 3.00
8 40,320 27.81
9 362,880 291.95
10 3,628,800 2048.00

While we have a DM generator, we do not have a model of what are typical cues used to
access a semantic store and how those cues could interact with the performance profile of
the semantic retrieval mechanism. For instance, we do not know how selective the cues are
likely to be, meaning how many elements, termed candidates, could possibly satisfy any
part of the cue. Furthermore, we do not know the proportion of cues that will have no
perfect matches. To allow us to test these different interactions, we constructed the stores
so that we can generate cues with independently controlled selectivity. In each KB, there
are k! elements and each element has augmentation cardinality of (k+1). Fori= 2 ... k, the
ith augmentation of an element has selectivity (k!/i). The Oth augmentation of each element
is shared by all elements and the 1st augmentation is unique.

Selectivity Sweep

Our first question is whether the semantic retrieval mechanism provides bounded
retrievals for under-specified cues, independent of the number of candidate elements. For
each distinct augmentation in the store, we constructed a cue and measured retrieval time.
As depicted in Figure F1, we found nearly constant-time retrievals within each data set,
independent of augmentation selectivity, measuring just under 0.4 msec. for k=10.

Cue Sweep

Our next question is whether combinations of augmentations result in complex cues that
adversely affect retrieval time. We constructed all possible lengths of cues using all
combinations of augmentation selectivity and measured retrieval time. As shown in Figure
F2, the only factor affecting retrieval time within a data set was the number of
augmentations in the cue (R?~1), achieving a maximum of about 0.5 msec. for k=10.
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Figure F1. Synthetic Selectivity Sweep Results
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Figure F2: Synthetic Cue Sweep Results

Failure Sweep

For our mechanism, retrieval failure is the algorithmic worst-case, as it must examine and
fail to verify all candidate elements. We constructed our last experiment to measure
retrieval time for cues that fail only after examining significant proportions of the elements
in the KB. While our mechanism minimizes the chance of this situation, these results are
useful to set an expectation for the unlikely worst-case retrieval time in any given semantic
store. As shown in Figure F3, the number of inspected candidate elements was the only
factor affecting retrieval time, independent of the data set. Because the time is linear in the
number of candidates, and not the total number of KB elements, our mechanism, for even
worst worst-case cues, scales to arbitrarily large data sets when cue augmentations are
sufficiently selective.
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Figure F3: Synthetic Failure Sweep Results
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