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Abstract

This paper presents data from a working ML/AI system being applied to simulated
combat identification (CID) scenarios. The application, which integrates continual
and real-time reinforcement learning with the Soar cognitive architecture, learns
from online experience to accurately predict hostile airborne objects based on
kinematic characteristics. Our results suggest that this integration framework can
scale to big data scenarios to learn tactically in real-time.

1 Introduction

The application discussed in this paper concerns two concepts for Naval defense, as shown in Figure
1: common tactical air picture (CTAP; left) and combat identification (CID; right). The CTAP process
collects, processes, and analyzes data from a vast network of sensors, platforms, and decision makers
and provide situational awareness to decision makers. The CID process locates and labels critical
airborne objects (as friendly, hostile, or neutral) with high precision and efficiency based on a CTAP
as part of the core kill chain process.

The existing methods of CTAP and CID involve wide ranges of participating platforms, participating
sensors, networks and system. Challenges in the CID process include (1) extremely short time
for fusion, decision-making, and targeting; (2) uncertain and/or missing data outside sensor (e.g.
radar, radio) ranges; (3) manual decision-making; (4) heterogeneous data sources for fusion and
decision-making; and (5) multiple decision-makers in the loop.

Specifically, the CTAP and CID problems can be seen as both big data and no data. On one hand, the
data used for CID comes from a combination of massively cooperative and non-cooperative sensors
(where, typically, each sensor collects certain attributes). The big CID data then needs to be fused
over time and space since they are collected in a distributed, continuous and real-time fashion. There
is limited computation and storage available for sailors in a tactical environment, therefore, using
and consuming this big data in a continuous fashion provides an extra challenge. On the other hand,
adversaries often conceal and change their true intentions, therefore rare or no data are observed for
analyzing anomalous and adversarial behavior. Therefore, the CTAP, CID, and kill chain problems
are challenging application areas for analytic, machine learning (ML), or artificial intelligence (AI)
methods.

2 Tactical Decision Making and Online, Continual, Adaptive, and Real-time
Learning Required in CID

The focus of this work is on decision-making in the CID process. Figure 1 (right) shows watch
stations involved in a CID decision-making process for a Combat Information Center (CIC). CID
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Figure 1: Left: The Common Tactical Air Picture (CTAP) process collects, processes, and analyzes
data from a vast network of sensors, platforms, and decision-makers and provides situational aware-
ness to sailors. Right: a Tactical Action Officer (TAO) is a core decision-maker in a CID process with
a very high cognitive burden.

decision-making can be very manual, requiring heterogeneous data sources and involving multiple
stake-holders (e.g. watch stations). Decision makers such as Tactical Action Officers (TAOs) and Air
Defense Officers (ADOs) are constantly overwhelmed with the cognitive reasoning required [5].

Our goal is to apply ML/AI methods to assist sailors by reducing their cognitive burden and improve
timely CID decision-making in a tactical environment, where a tactical action is a conceptual action
aimed at achieving a specific goal (e.g. deciding if an airborne object is a friend or foe).

In a tactical environment, a CID application needs to be trained initially offline and then continually
improved and adapted from a stream of new data, since decision makers continuously receive new
data and need to continuously update their decisions. The big data is updated in real-time, therefore,
machine learning has to be performed in an online, continuous, adaptive, and real-time fashion as
each and every new datum is streamed into the system. A real-time learning algorithm needs to
update its parameters for each new data point so learning occurs at any moment. Machine learning in
this context gives decision makers a definite tactical edge.

In this paper, we investigate the efficacy of one such AI system for using, fusing, and improving
existing knowledge models with the goal of timely and automatic decision-making and reduced
cognitive burden in the operational environment. The system builds on an existing methodology [7],
combining unsupervised and reinforcement learning (RL) with the Soar cognitive architecture [3, 4].
The contribution of the paper is that we present and demonstrate a working implementation using a
simulation scenario to accurately predict hostile airborne objects based on kinematic characteristics.
The system can potentially scale up to big data and large knowledge bases related to CID to fuse and
learn from data at a symbolic and tactical level in real-time.

3 Continual and Real-time Learning via Soar Reinforcement Learning
(Soar-RL) for CID

Soar [4] is a cognitive architecture that scalably integrates a rule-based AI system with many other
capabilities, including RL and long-term memory. The main decision cycle involves rules that propose
new operators (e.g. internal decision or external actions), as well as preferences for selecting amongst
them; an architectural operator-selection process; and application rules that modify agent state. The
reinforcement-learning module (Soar-RL) modifies numeric preferences for selecting operators based
on a reward signal, either via internal or external source(s) – importantly, Soar-RL learns in an online,
incremental fashion and thus does not require batch processing of (potentially big) data. Soar has
been used in modeling large-scale complex cognitive functions for processes such as those in a kill
chain [2].

A CTAP/CID application typically includes “track” data for airborne objects (each to be classified as
either friendly, neutral, or hostile). A track is a time series of information for the object, including
data observed by sensors and needed to be predicted as follows:

• Inputs: Longitude, Latitude, Altitude, Speed, Acceleration, Heading (predicted compass di-
rection), IFF (Identification, friend or foe – an identification system designed for identifying
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Figure 2: Soar-RL applied to CID

friends), Point of origin (where the airborne object came from), Aircraft type, Aircraft class,
etc.

• Outputs: CID (probability of hostility (POH), where 1 is a friend and 0 is an enemy)

Figure 2 illustrates how a track state is mapped into Soar-RL. Each state goes through multiple
production rules, which are matched either from the existing knowledge and rules or those discovered
from new data. Soar-RL fuses the rules together as evidence for decision-making. There are two
decisions or classes considered in this problem: “hostile” or “not hostile” and the input data for
classification/decision making are the kinematic characteristics such as speed, altitude, heading, and
the changes of these kinematic characteristics.

As shown in Equation (1), Soar-RL is implemented in a typical RL implementation involving a
recursive formula that is widely accepted in the RL research and literature [6][8]. Since we only
consider an on-policy setting or SARSA, Q(st+1, a) = 0 in Equation (1). Therefore, Q(st+1, at+1)
is updated continuously for each time point and immediate reward r.

Q(st+1, at+1) = Q(st, at) + α[r + γmax
a∈A

Q(st+1, a)−Q(st, at)] (1)

In Soar-RL, each rule is associated with a preference on which an operator decision is made. The
goal for Soar-RL is to learn and adjust the preferences of the initial rules dynamically and in real-time
when a new data point is presented. The preferences of the rules are related to the POHs but not
restricted to the value ranges of probabilities. The preferences are adjusted/learned/trained based
Equation (1). The actions for the reinforcement learning are the two decisions (hostile or not) for
an airborne object based on the observable kinematics for the object at time t. The preference of
a decision (i.e. hostile or not) is the expected total preference for each decision (action) at time t,
computed recursively.

One advantage of applying Soar-RL to CTAP/CID applications is the relative ease of incorporating
existing knowledge via English-like production rules that may originate via a variety of sources,
including knowledge bases or learning/discovery by ML/AI algorithms.

4 Simulation Results

To illustrate the methods, we used the Naval Simulation System (NSS) [10], which employs Monte
Carlo simulation to model Naval platforms and missions, including sensors, tactical pictures, and the
command and control of assets in a tactical scenario.

Each scenario run was generated according to a different random seed number specified by an NSS
user. There were about 2690 tracks in the simulation, 449 (16.7%) tracks were hostile. Each different
random seed generates a slightly different set of track data. Four random seeds (10, 11, 1256, 23576)
with corresponding track data were reported in this paper. The goal is to classify airborne object
hostility based on the kinematic features.

Table 1 summarizes and compares classification error rates for two Soar-RL settings (1. initial
preferences were computed from big data method [9]; 2. initial preferences are zeros) with a few
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other supervised batch learning methods such as decision trees (i.e. J48), logistic regression (LR),
and Naïve Bayes (NB) from the tool Weka [1]. The online Soar-RL performed comparatively well
with the other batch machine learning methods.

Table 1: Classification Errors Comparison

J48 LR NB Soar-RL 1 Soar-RL 2
Train (seed=10) 0.26% 0.93% 1.19% 2.8% 1.9%
Test (seed=11) 0.24% 0.75% 0.92% 1.4% 0.6%
Test (seed=1256) 1.24% 1.02% 1.17% 1.9% 1.8%
Test (seed=23576) 0.63% 1.32% 1.56% 2.2% 1.2%

Figure 3: On-line learning table.

5 Conclusion

Soar-RL/LLA is a continual learning method for CID; CID applications can train an ML/AI assistant
in a tactical environment and must continue to learn and adapt to sailors’ feedback or new data. Figure
3 evidently shows that Soar-RL learns (and the error rate decreases) as the scenario progresses from
the beginning set of track points (1-539) to the last set of track points (2154-2690). The Soar-RL
ensures the following aspects of continual learning requirements:

• Bounded system size – the Soar-RL model’s capacity is fixed as reflected in the number
of preferences is fixed, the system uses its capacity intelligently and converges to ensure
maximizing future reward;

• No direct access to previous experience – while the model can remember a limited amount
of experience, Soar-RL does not have direct access to past tasks or be able to rewind the
environment;

These conditions of Soar-RL are also studied in the theory and practice of the alpha decay and
convergence of Soar-RL [6]. In summary, Soar-RL provides a continual and real-time machine
learning for a potential CTAP and CID application. Soar-RL provides a real-time, scalable learning
mechanism that enables systems of systems to gradually improve performance and adapt to new
environments.
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