Reinforcement Learning in Soar

Nate Derbinsky

Wentworth Institute of Technology

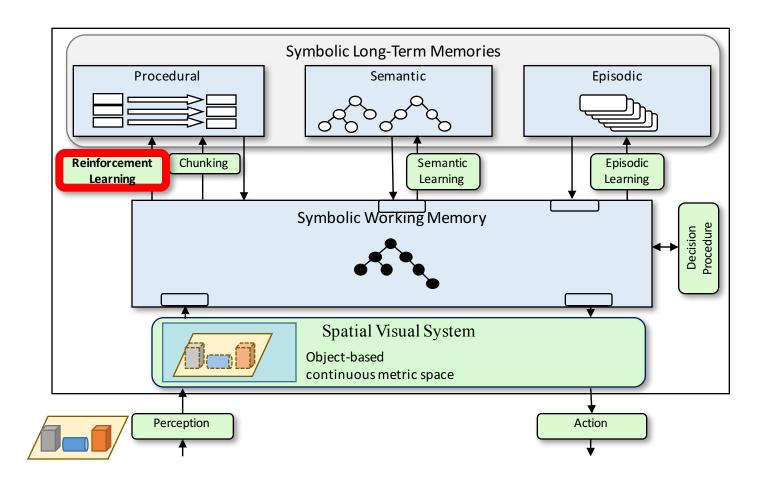
John Laird

University of Michigan

Topics

- RL as a learning mechanism
- Simple example
- Architecture & agent design
- Eater integration

Soar 9



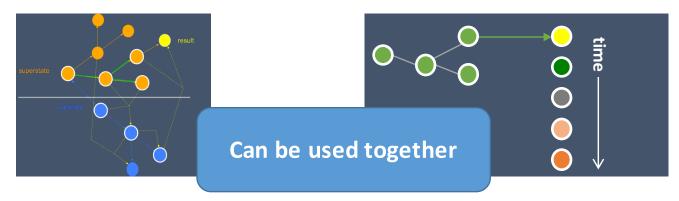
Methods for Learning Procedural Knowledge

Chunking

 Converts deliberation in substates into reaction via rule compilation

Reinforcement Learning

 Tunes operator numeric preferences to reflect expectation of reward

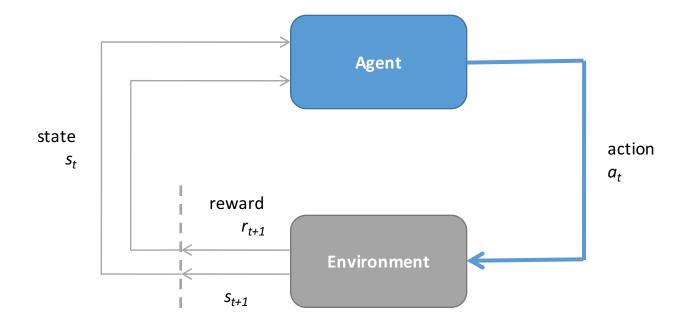


Creates new rules

Updates existing rules

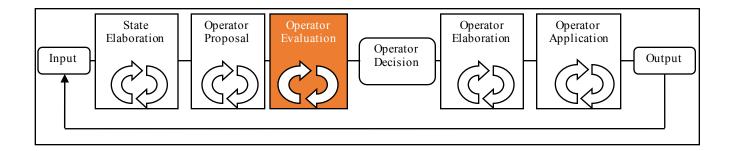
RL Cycle

Goal: learn an action-selection policy such as to maximize expected receipt of future reward



Soar Basic Functions

- ▶1. Input from environment
- 2. Elaborate current situation: parallel rules
- 3. Propose operators via acceptable preferences
- 4. Evaluate operators via preferences: Numeric indifferent preference
- 5. Select operator
- 6. Apply operator: Modify internal data structures: parallel rules
- 7. Output to motor system [and access to long-term memories]



Left-Right Demo

- 1. Soar Java Debugger
- 2. Source left-right.soarfile

Left-Right Demo

Script

- 1. srand 50412
- 2. step
- 3. run 1 -p
- 4. click: op preftab
 - > note numeric indifferents
- 5. print left-right*rl*left
- 6. print left-right*rl*right
- **7.** run
 - note movement direction
- 8. print left-right*rl*left
- 9. print left-right*rl*right
- 10. init-soar
- 11. Repeat from #2 (~5 times)

Left-Right: Takeaways

Reinforcement learning changes rules in procedural memory

- Changes are persistent
- Change affects numeric indifferent preferences, which in turn affects the selection of operators
- Change is in the direction of the underlying reward signal (will discuss this more shortly)

RL -> Architecture & Agent Design

Value function via RL rules [agent]

Reward

via working-memory structures [architecture, agent]

Policy updates

via Temporal Difference (TD) Learning [architecture]

RL Rules

The RL mechanism maintains Q-values for state-operator pairs in specially formulated rules, identified by syntax

 RHS with a <u>single action</u>, asserting a <u>single numeric</u> <u>indifferent preference</u> with a <u>constant value</u>

Reward Representation

Each state in WM has a reward-link structure

```
Reward is recognized by syntax

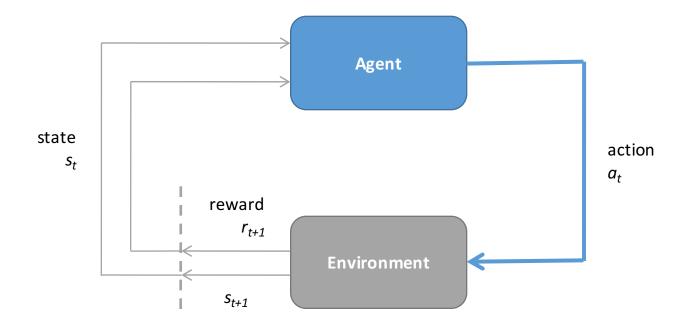
(<reward-link> ^reward <r>)

(<r> ^value [integer or float])
```

- The reward-link is **not** directly modified by the environment or architecture (i.e. requires agent interpretation/management)
- Reward is collected at the beginning of each decide phase
- Reward on a state's reward-link pertains only to that state (more on this later)
- Reward can come from multiple sources: reward values are summed by default

Reward Rule Examples

RL Cycle



	Input	Propose	Decide	Apply	Output
d					
u u					
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d				
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d			
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		
d +1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d +1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d+1	state _{d+1} reward _{d+1}				

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d +1	state _{d+1} reward _{d+1}	evaluate operators _{d+1}			

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d +1	state _{d+1} reward _{d+1}	evaluate operators _{d+1}	select operator _{d+1} update policy _d		

RL Updates

- Takes place during decide phase, after operator selection
- For all RL rule instantiations (n) that supported the last selected operator

$$value_{d+1} = value_d + (\delta_d / \mathbf{n})$$

Where, roughly...

$$\delta_d = \alpha [\text{ reward}_{d+1} + \Upsilon(q_{d+1}) - \text{ value}_d]$$

Where...

- α is a parameter (learning rate)
- Y is a parameter (discount rate)
- q_{d+1} is dictated by learning policy
 - On-policy (SARSA): value of selected operator
 - Off-policy (Q-learning): value of operator with maximum selection probability

Value Function

Issues

Structure

- What features comprise RL-rule conditions (tradeoff: convergence speed vs. performance)
- High dimensionality -> computationally infeasible

Initialization

 Quality estimates may bootstrap agent performance and reduce time to convergence

Eaters RL: General Idea

- Reward comes from:
 - eating food
 - -1 for movement (push toward efficiency)
- RL rules will learn to select between forward and rotate operators based on reward.

Eaters RL 1: Enable RL

Get your eater code

Add to top of file – turn on RL

- rl -s learning on
- indiff -g # use greedy decision making
- indiff -e 0.001 #low epsilon

Eaters RL 2: Modify Proposals

Remove indifferent preference from proposals so RL rules will influence decision.

Eaters RL 3: General RL-Rules: GP

Generate RL rules for every color and operator combination:

Each of these will generate 6 rules!

RL will change the value of = 0.0 in each of the rules as it learns

Eaters RL 4: Reward

Add rule that assigns reward: use the change in score:

Eaters RL 5: Run!

- Run eater
- Look at rl rules: p -r
- Reset eater (type "r"), run again
- See how rl rules change:
 - Number of updates
 - Value of indifferent preference
- Gets better, but is very limited by the operators available (forward and rotate).