RL Tutorial
Soar Workshop 33 — Nate Derbinsky

While waiting...
1. Make sure you have internet access

2. Download Soar Tutorial package
web.eecs.umich.edu/~soar/workshop tutorial

3. Download Graphviz
www.graphviz.orqg

4. Download Eclipse (with at least Java)
www.eclipse.orq

5. Download tutorial support files
web.eecs.umich.edu/~nlderbin/workshop33

Setting Expectations

Not a tutorial on Reinforcement Learning (RL)

Reinforcement Learning: An Introduction
Richard S. Sutton, Andrew G. Barto
webdocs.cs.ualberta.ca/~sutton/book/ebook

Topics
— RL as a learning mechanism in Soar
— Agent design
— Advanced issues
— Additional resources

Soar 9

4 June 2013

4 Symbolic Long-Term Memories)
Procedural Semantic Episodic
\C 7 - Y X >
Reinforcement |Chunking| Semantic Episodic
Learning Learning Learning
[A 4 A 4
2 Symbolic Working Memory 7o
o= (el ¢}
g g g
[£ S
< o
+
Perceptual STM <— Perceptual LT Memory
4 v
Perception Mental Imagery H Action
A
Body
\4
RL Tutorial

Learning Procedural Knowledge

Chunking Reinforcement Learning

* Converts deliberation in * Tunes operator numeric
substates into reaction via preferences to reflect
rule compilation expectation of reward

* Creates new rules e Updates existing rules

RL Cycle

Goal: learn an action-selection policy such as to maximize
expected receipt of future reward

state ;
action

4 June 2013 RL Tutorial

Left-Right Demo

1. Soar Java Debugger

2. Source left-right agent
Agents/left-right/left-right.soar

4 June 2013 RL Tutorial

Left-Right Demo

Script

srand 5041231
step
run 1 -p
click: op_pref tab
» note numeric indifferents
5. print left-right*rl*left
6. print left-right*rl*right
7. run

» note movement direction
8. print left-right*rl*left
9. print left-right*rl*right
10.init-soar
11. Repeat from #2 (~5 times)

 w DN

Left-Right: Takeaways

Reinforcement learning changes rules in
procedural memory

— Changes are persistent

— Change affects numeric indifferent preferences,
which in turn affects the selection of operators

— Change is in the direction of the underlying
reward signal (will discuss this more shortly)

Components of RL

RL rules
Reward representation

_earning

RL Rules

The RL mechanism maintains Q-values for
state-operator pairs in specially formulated rules,
identified by syntax

— RHS must be a single action, asserting a single
numeric indifferent preference with a constant value

sp {left-right*rl*left sp {left-right*rl*right
(state <s> “name left-right (state <s> “name left-right
“operator <op> +) “operator <op> +)
(<op> “name move (<op> "“name move
“dir left) “dir right)
—_> -2
(<s> “operator <op> = 0) (<s> "operator <op> = 0)

} }

N

o AW

Left-Right Demo

Focus: RL Rules

Soar Java Debugger

Source left-right agent
Agents/left-right/left-right.soar

print --full --rl
run
print --full --rl

print --rl

Reward Representation

Soar creates a reward-1ink structure on each state in WM

— Soar Java Debugger
1. step 5
2. print --exact (* "reward-link *)

Reward is recognized by syntax
(<reward-link> “reward <r>)
(<r> "value [val])

— [val] must be a numeric constant (integer or float)

— Thereward-link is not directly modified by 10

— Thereward-link is not automatically cleaned

— Reward is collected at the beginning of each decide phase

— Reward on a state’s reward-link pertains to that state (more on this later)
— Multiple reward values are summed by default

Reward Rule Examples

sp {left-right*reward*left sp {left-right*reward*right
(state <s> "name left-right (state <s> "name left-right
“location left “location right
“reward-link <rl>) “reward-link <rl>)
-_— —-_
(<rl> “reward <r>) (<rl> “reward <r>)
(<r> "“value -1) (<r> “value 1)
} }

4 June 2013 RL Tutorial 13

state

4 June 2013

RL Cycle

RL Tutorial

action

14

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

4 June 2013 RL Tutorial 15

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

state,

4 June 2013 RL Tutorial 16

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

evaluate

state,
operators,

4 June 2013 RL Tutorial 17

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

evaluate select

state,
operators, operator,

4 June 2013 RL Tutorial 18

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

evaluate select initiate
stateg
operators, operator, external
action(s)

4 June 2013 RL Tutorial 19

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

evaluate select initiate
stateg
operators, operator, external
action(s)
statey,,
rewardg,,

4 June 2013 RL Tutorial 20

RL Cycle in Soar

state,

state,,;

rewardg,,

4 June 2013

evaluate select initiate
operators, operator, external
action(s)
evaluate
operatorsy, ,
RL Tutorial 21

RL Cycle in Soar
| Decsion | input | Propose | Decide | Apply | Output _

- evaluate select initiate
operators, - external
action(s)

select
operator
state,,, evaluate P d+1
operators
reward,, P drd update
policy,

4 June 2013 RL Tutorial 22

RL Updates

* Takes place during decide phase, after operator selection

* For all RL rule instantiations (n) that supported the /ast selected
operator

value,,; = value, + (6 4/n)

Where, roughly...

&4 = afreward,, + Y(qy,,) - value]

Where...
* aisaparameter (learning rate)
* Yisaparameter (discount rate)

* Q4 is dictated by learning policy
— On-policy (SARSA): value of selected operator
— Off-policy (Q-learning): value of operator with maximum selection probability

N

® N oUW

Left-Right Demo

Focus: RL Updates

Soar Java Debugger
Source left-right agent

Agents/left-right/left-right.soar

watch --rl
run
print sl

print —--depth 2 rl

rl --stats
rl

0=0.3
0=0.3

1+0.9(0)-0]=0.3

1+0.9(0)-0.3]=0.21

Controlling RL in Soar

Get/Set a parameter:
— rl [-g|--get] <name>
— rl [-s|--set] <name> <value>

Changing learning rate to 1 (deterministic env.)
1. rl

2. rl --set learning-rate 1
3. rl

RL Agent Design

1. RLrules
2. Reward rules
3. Enable RL

Baseline: left-right-start.soar

web.eecs.umich.edu/~nlderbin/workshop33/rl

1. RL Rules

left-right-1.soar

a) Add RL rules for moving left/right (slide 10)

— Checkviaprint --rl

b) Remove indifferent preference from
operator proposal rules

— Note: this will cause a tie impasse if (a) is not
done correctly

2. Reward Rules
left-right-2.soar

Add rules to add reward to reward-link,
dependent upon the location to which the agent
decided to move (slide 14)

3. Enable RL

left-right-3.soar

By default, RL is disabled. To enable, set the
parameter (slide 26):

rl —--set learning on

Note: the agent will function without this step,
but rules will not update, and hence will act
identically to the baseline agent.

Advanced Issues

Gaps in rule coverage
RL in substates
Exploration policies
Rule generation

Gaps in Rule Coverage

Gap: one or more contiguous decision cycles
during which no RL rules fire

By default, Soar will automatically propagate RL

updates over gaps, where rewards are discounted
with respect to the length of the gap

01 02 03 04 05 06 07
rl r2 r3 r4 rS5 ré

*A RL*B RL*C RL*

Wd{ﬂﬁdz(mﬂdﬁm *C) r5+d(r6)+d?(RL*D)

RL in Substates

O11 012 Ole6 017
S1 | ril | ri2 | r13 | ri4 | ris | rl6 | N
7 ¥
| | | | | | |
RL*1A RL*1B
— r12+ri13+ri14+ri15+r16+d(RL*1B) -
021 51 022 - 02323 Change since v9.3.1
52 | T | T |’ Controlled via hrl-discount

RL*2A RL*2B
r21+d(r22)+d?(RL*2B) r23

 Rewards are collected independently on each state

 Rewards at a superstate are attributed to the last RL-
supported, selected operator

4 June 2013 RL Tutorial 32

Exploration Policies

There are numerous policies for selecting operators
probabilistically (see Manual)

— Deterministic (first, last)

— Softmax (default)

— Epsilon Greedy (change since v9.3.1 — doesn’t switch!)
— Boltzmann

Pertinent commands (see Manual)
— indifferent-selection
— predict
— select

Rule Generation

The number of RL rules required for an agent is
usually unfeasibly large to write by hand

Options
— gp command
— Rule templates
— Chunking

gp Command

* Similar syntax to sp command

* Generates rules, at source time, according to the
cross-product of a fixed number of dimensions,
each with a fixed domain

— Very fast, potentially creates a lot more rules than will
be encountered by the agent

gp {example*gp > Total: 36 productions sourced.
(state <s> "“name left-right

> print
“operator <op> +
“"dl [abc] example*gp*36
“"d2 [1231]) example*gp*35

(<op> “name move
*“dir [left right up down])
-—>
(<s> "operator <op> = 0)

}

Left-Right Demo

Focus: gp (left-right-3-gp.soar)

Replace RL rules (slide 28) with a single gp
command

— Source agent

— Verify rules: print --full --rl

Rule Templates

* Allows Soar to dynamically generate new RL rules

based on a predefined pattern as the agent encounters
novel states

e Similar to syntax of RL rules

— Requires :template flag
* Note: without will be an RL rule that matches multiple states
— Numeric indifferent preference value can be a variable

e Behavior

— Rather than firing, creates new RL rules from instantiations
— Significantly slower than gp

Left-Right Demo

Focus: template (left-right-3-template.soar)

Replace RL rules (slide 28) with a single rule
template

1. Source agent

2. Verify rules
»print --full --rl
»print --full --template

3. run

4. Verify rules
»print --full --rl
»print --full --template

Chunking

“Since RL rules are regular productions, they can
be learned by chunking just like any other
production. This method is more general than
using the gp command or rule templates, and is
useful if the environment state consists of
arbitrarily complex relational structures that
cannot be enumerated.”

- Soar Manual

Additional Resources

* Documentation
* Demo agents
* Readings

Documentation

Manual and Tutorial
Documentation/

Additional Topics
— RL update details
— Eligibility traces
— Additional learning agent walkthrough (water-jug)
— Usage: commands, parameters, statistics, etc.

Demo Agents

Agents/

e Left-Right
* Water Jug RL

— Discussed in Soar-RL Tutorial

Select Readings

code.google.com/p/soar/wiki/Publications

2005
— Soar-RL: Integrating Reinforcement Learning with Soar
* Shelley Nason, John E. Laird (Cognitive Systems Research)
2007
— The Importance of Action History in Decision Making and Reinforcement Learning
* Yongjia Wang, John E. Laird (ICCM)
2008
— A Computational Unification of Cognitive Control, Emotion, and Learning
* Robert P. Marinier Il (Dissertation)
2009
— Learning to Play Mario
e Shiwali Mohan (Technical Report)
— Hierarchical Reinforcement Learning in the Taxicab Domain
* Mitchell K. Bloch (Technical Report)
2010
— Instance-Based Online Learning of Deterministic Relational Action Models
e Joseph Xu, John E. Laird (AAAI)
— Using Imagery to Simplify Perceptual Abstraction in Reinforcement Learning Agents
e Samuel Wintermute (AAAI)
2011
— Learning to Use Episodic memory
* Nicholas Gorski, John E. Laird (Cognitive Systems Research)
2012

— Online Determination of Value-Function Structure and Action-value Estimates for Reinforcement Learning in a Cognitive Architecture
* JohnE. Laird, Nate Derbinsky, Miller Tinkerhess (Advances in Cognitive Systems)

