Episodic-Memory Tutorial

Soar Workshop 32 - Nate Derbinsky

While waiting...

- 1. Make sure you have internet access
- Download Soar Tutorial package v9.3.2 <u>code.google.com/p/soar/wiki/SoarTutorial</u>
- 3. Download Graphviz

www.graphviz.org

- Download Eclipse (with at least Java) www.eclipse.org
- Download tutorial support files web.eecs.umich.edu/~nlderbin/workshop32

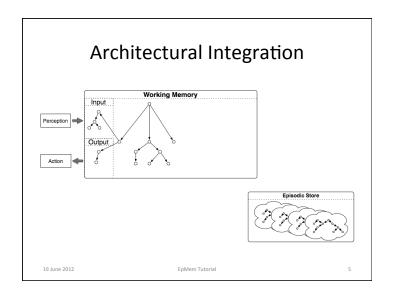
19 June 2012

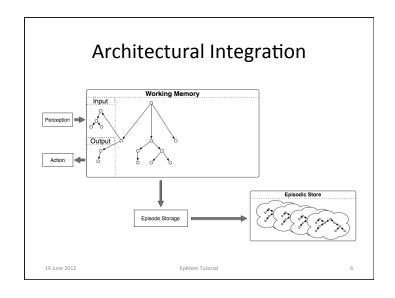
EpMem Tutorial

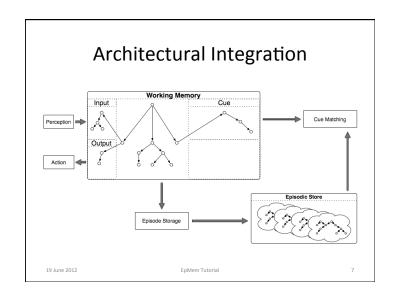
Agenda

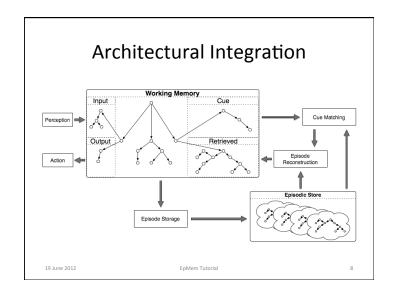
- Big picture
- Basic usage
- Demo task
- Additional resources

19 June 2012 EpMem Tutorial


Symbolic Long-Term Memories Symbolic Long-Term Memories Semantic Semantic Semantic Learning Symbolic Working Memory Perceptual STM Perceptual LT Memory Body 19 June 2012 Episodic Learning Action 3


Episodic Memory: Big Picture


Episodic memory is a weak learning mechanism


- Automatically captures, stores, and temporally indexes agent state
- Supports content-addressable agent interface to autobiographical prior experience

19 June 2012 EpMem Tutorial 4

Basic Usage

- · Working-memory structure
- Episodic-memory representation
- · Controlling episodic memory
- Storing knowledge
- Retrieving knowledge

19 June 2012

EpMem Tutorial

Working-Memory Structure

Soar creates an epmem structure on each state

- Soar Java Debugger
 - step 5
 - print --exact (* ^epmem *)
 - print el

Each epmem structure has specialized substructure

- command: agent-initiated actions
- result: architectural feedback
- present-id: current episode number (more later)

19 June 2012

EpMem Tutorial

Episodic-Memory Representation

Similar to working memory: symbolic triples

- Attributes cannot be identifiers (currently)
- Structures within an episode are connected; separate episodes are disconnected

Controlling Episodic Memory

Get/Set a parameter:

- epmem [-g|--get] <name>
- epmem [-s|--set] <name> <value>

EpMem is **disabled** by default. Try enabling it...

- 1. epmem
- 2. epmem --set learning on
- 3. epmem

19 June 2012

Storing Knowledge

- Automatic storage requires EpMem to be **enabled** (see slide 12)
- Storage captures the top state of working memory
- Events trigger storage of new episodes
 - epmem --set trigger << dc output >>
 - dc: decision cycle
 - · output: new augmentation of output-link (default)
- Storage takes place at the end of a phase
 - epmem --set phase << output selection >>
 - output is default
 - · selection may be useful for in-the-head agents

19 June 2012

EpMem Tutorial

13

Automatic Storage: Example (1)

- Soar Java Debugger
 - 1. epmem --set trigger dc
 - 2. epmem --set learning on
 - 3. watch --epmem
 - 4. run 5 -p
 - 5. epmem --print 1
 - 6. ctf ep.gv epmem --viz 1
 - 7. print e1
 - 8. epmem --stats

19 June 2012 EpMem Tutorial

Automatic Storage: Example (1)

Debrief

- What wasn't captured?
- Attributes can be excluded from encoding (and subsequent recursion)
 - -epmem --set exclusions <label>
 - If <label> already excluded, now included
- Try previous example, add:
 - -epmem --set exclusions epmem
 - -epmem --set exclusions smem

19 June 2012

EpMem Tutorial

15

Automatic Storage: Example (2)

- Eaters
 - 1. New agent (advanced-move.soar)
 - Spawn Debugger
 - 2. epmem --set learning on
 - 3. run
 - 4. epmem --stats

19 June 2012

EpMem Tutorial

4

Retrieving Knowledge

Cue-Based

Find the episode that best matches a cue and add it to working memory

Temporal Progression

Replace the currently retrieved episode with the next/previously encoded episode

Non-Cue-Based (not covered)

Add an episode to working memory from episode #

Common Constraints:

- Requires that EpMem is enabled (slide 12)
- Only one per state per decision
- Processed during phase (slide 13)
- Only re-processed if WM changes to commands
- Meta-data (status, etc) automatically cleaned by the architecture

19 June 2012

EpMem Tutorial

17

Cue-Based Retrieval: Syntax

- The neg-query is optional
- Cues must be acyclic
- The <q> and <nq> identifiers form the roots of episode sub-graph cues

EpMem Tutorial

- query represents desired structures
- neg-query represents undesired structures

19 June 2012

Cue-Based Retrieval: Cue Semantics

Values of cue WMEs are interpreted by type

- Constant: exact match
- Long-Term ID: exact match, stop
- Short-Term ID: Wildcard (but must be identifier)

19 June 2012

EpMem Tutorial

Cue-Based Retrieval: Episode Scoring

- · Leaf WME, either...
 - Cue WME whose value is a constant OR
 - Cue WME whose value is an identifier and that identifier has no augmentations
- A leaf wme is satisfied (w.r.t. an episode) if...
 - The episode contains that WME AND
 - The episode contains a path from root to that WME
- Episode scoring
 - (balance)(cardinality) + (1-balance)(activation)
 - balance: parameter=[0,1], default=1
 - cardinality: # satisfied leaf WMEs
 - activation: Σ satisfied leaf WME activation (see Manual)
 - cardinality/activation negated for neg-query

19 June 2012

Cue-Based Retrieval: Cue Matching

Graph matching

Candidate episode

Defined as satisfying at least one leaf WME

Cue matching will return the most recent graphmatched episode, or the most recent non-graphmatched candidate episode with the maximal episode score

19 June 2012

EpMem Tutorial

11

19 June 2012

Cue-Based Retrieval: Result Augmentation ^retrieved <retrieval-root> Root of the retrieved memory ^<< success failure >> <query> <neg-query> Query status ^match-score # Float, episode score (slide 19) ^cue-size # Integer, number of leaf WMEs ^normalized-match-score # match-score/cue-size ^match-cardinality # Integer, number of satisfied leaf WMEs (|query| - |neg-query|) ^memory-id # Integer, episode # retrieved ^present-id # Integer, current episode # ^graph-match << 0 1 >> Integer, 1 if graph match succeeded ^mapping <mapping-root> A mapping from the cue to episode

EpMem Tutorial

Cue-Based Retrieval: Example (1)

query-1.soar (find superstate nil)

- Soar Java Debugger
 - 1. epmem --set trigger dc
 - 2. epmem --set learning on
 - 3. watch --epmem

 - 5. run 5 -p
 - 6. print -d 10 e1

19 June 2012

EpMem Tutorial

Cue-Based Retrieval: Example (1)

Result

Pop Quiz: how did I make this?

19 June 2012

EpMem Tutorial

24

Cue-Based Retrieval: Example (1)

CONSIDERING EPISODE (time, cardinality, score): (1, 1, 1.000000) NEW KING (perfect, graph-match): (true, true)

19 June 2012

EpMem Tutorial

Cue-Based Retrieval: Example (2)

query-2.soar (find when max is defined and first is true)

- Soar Java Debugger
 - 1. source query-2.soar
 - 2. run

CONSIDERING EPISODE (time, cardinality, score): (11, 1, 1.000000) NEW KING (perfect, graph-match): (false, false) CONSIDERING EPISODE (time, cardinality, score): (1, 2, 2.000000) NEW KING (perfect, graph-match): (true, true)

19 June 2012

EpMem Tutorial

Cue-Based Retrieval: Example Agent query-2/3.soar

- 1. Counts from "first" (1) to "max" (10)
 - Classifies each counter value as even/odd
- 2. When done counting, query
 - Changes for each example
- 3. When guery completes, halt

19 June 2012

EpMem Tutorial

Cue-Based Retrieval: Example (2b)

query-2b.soar (longer version of 2; max=10k)

- Soar Java Debugger
 - 1. source query-2b.soar
 - 2. run
 - 3. epmem --stats
 - 4. epmem --timers

CONSIDERING EPISODE (time, cardinality, score): (10001, 1, 1.000000) NEW KING (perfect, graph-match): (false, false) CONSIDERING EPISODE (time, cardinality, score): (1, 2, 2.000000) NEW KING (perfect, graph-match): (true, true)

19 June 2012

Cue-Based Retrieval: Example (3)

query-3.soar (find a number that is even and odd)

- · Soar Java Debugger
 - source query-3.soar
 - run
 - epmem --stats
 - epmem --timers

```
CONSIDERING EPISODE (time, cardinality, score); (11, 1, 1.000000)
NEW KING (perfect, graph-match); (false, false)
CONSIDERING EPISODE (time, cardinality, score); (9, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (7, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (7, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (5, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (3, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (3, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (3, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (2, 1, 1.000000)
CONSIDERING EPISODE (time, cardinality, score); (2, 1, 1.000000)
```

19 June 2012 EpMem Tutorial

Cue-Based Retrieval

Optional Modifiers

```
(<cmd> ^before time-id)
(<cmd> ^after time-id)
(<cmd> ^prohibit time-id1 time-id2 ...)
```

Task. Modify query-3. soar to find an episode with an even count, before episode 10, that is not a power of 2.

- Using a neg-query (query-3b.soar)
- 2. Using modifiers (query-3c.soar)

19 June 2012 EpMem Tutorial

Cue-Based Retrieval

Debrief: neg-query vs. modifiers

neg-quer

```
CONSIDERING EPISODE (time, cardinality, score): (11, 0, 0.000000) NEW KING (perfect, graph-match): (false, false) CONSIDERING EPISODE (time, cardinality, score): (8, 0, 0.000000) CONSIDERING EPISODE (time, cardinality, score): (6, 1, 1.000000) NEW KING (perfect, graph-match): (true, true)
```

modifiers

```
CONSIDERING EPISODE (time, cardinality, score): (6, 1, 1.000000)
NEW KING (perfect, graph-match): (true, true)
```

19 June 2012

EpMem Tutorial

Temporal Progression

```
(<cmd> ^next <new-id>)
(<cmd> ^previous <new-id>)
```

Retrieves the next/previous episode, temporally, with respect to the last that was retrieved

Task. Modify query-3c.soar (slide 31) to find the episode *after* (query-3c-after.soar).

19 June 2012

Task: Virtual Sensing

demo.soar

1. Produce a random number in WM EpMem automatically records this episode (demo-start.soar)

2. Remove the number from WM Write to the trace (for later verification)

3. Query episodic memory When did I last see a random number?

4. Reason about the retrieved episode Extract and print the number

19 June 2012

EpMem Tutorial

19 June 2012

Additional Resources

- Documentation
- · Demo agents
- Readings

EpMem Tutorial

Documentation

Manual & Tutorial Documentation/

Additional Topics

- Absolute non-cue-based retrievals
- Disk-based databases
- Performance
- Usage: commands, parameters, statistics, etc.

19 June 2012

EpMem Tutorial

Demo Agents

code.google.com/p/soar/wiki/ DLCategory Agents

- kb
 - Demonstrates and unit tests the EpMem API
- count-epmem
 - Counting agent: stores then retrieves
 - Used for performance evaluation

19 June 2012

Select Readings

code.google.com/p/soar/wiki/Publications

EpMem Tutorial

2004

A Cognitive Model of Episodic Memory Integrated with a General Cognitive Architecture Andrew M. Nuxoll, John E. Laird (ICCM)

Extending Cognitive Architecture with Episodic Memory
Andrew M. Nuxoll, John E. Laird (AAAI)

2009

9 – Efficiently Implementing Episodic Memory Nate Derbinsky, John E. Laird (ICCBR) – A Year of Episodic Memory John E. Laird, Nate Derbinsky (IJCAI Workshop)

2010

Extending Soar with Dissociated Symbolic Memories
 Nate Derbinsky, John E. Laird (ASS)
 Instance-Based Online Learning of Deterministic Relational Action Models
 Joseph Na, John E. Laird (AAAI)

2011

Learning to Use Episodic Memory
 Nicholas A. Gorski, John E. Laird (Cognitive Systems Research)

2012

Enhancing Intelligent Agents with Episodic Memory
 Andrew M. Nuxull, John E. Laird (Cognitive Systems Research)
 A Multi-Domain Evaluation of Scaling in a General Episodic Memory
 Nate Derbinsky, Justin Li, John E. Laird (AAU)

19 June 2012

37