Databases & Your Research
What, How, When/Why

Nate Derbinsky

Goals

By the end of this talk, you should...

1. have a big-picture understanding of core database
system distinctions and topics

2. have a basic understanding of the relational data
model, SQL, and query processing

3. have a practical sense of when and how the
application of database software and/or techniques
may benefit your research

Outline

What is a Database Management System?
— Core distinctions/topics

Relational Databases 101

— Relational model, SQL, indexing, tools/resources

Databases & Your Research

— Use cases

DataBase Management System (DBMS)

A system intended to organize, store, and
retrieve large amounts of data easily

Allows users to...
— Specify a schema (logical structure)
— Store large amounts of data
— Query and modify data quickly and reliably
— Control access from many users at once

Core DBMS Distinctions

Logical Data Model
Query Interface
Transaction Support
Concurrency
Performance

Logical Data Model

Constraints on logical data representation and
structure

Dominant: relational
— XML (and other document stores)
— Object-oriented
— Graph
— Key-value
— Triplestore

Query Interface

How a user interacts with stored data

1. Logical/High-level Query Language
— SQL (Structured Query Language) dialects
— XQuery
— SPARQL

2. Programmatic API
— Native
— Abstraction Library (ODBC)

Transaction Support

How the system handles a sequence of data
read/write operations

Atomicity Operations must be “all or nothing.”
Consistency Data must shift between truthful states.
T solation Concurrent users shall not see dirty data.

Durability Data changes survive system failure.

2/17/11 Databases & Your Research

Concurrency

The ability of the DBMS to service multiple requests

Typical classes:
— File-based
— Client-server
— Distributed

CAP Theorem: impossible to simultaneously guarantee...
— Consistency (all nodes see same data)

— Availability (service survival despite node failures)
— Partition tolerance (service despite message loss)

Performance

Memory management
Disk management
Locking

Query execution
— Indexing

— Planning
Optimization: OLTP, Analytics, Hashing, Desktop

A Representative Sample

Embedded - Desktop - Online Transaction Processing - Cloud/Distributed

C)I'\’/-\C L=

g Microsoft®

: A % SOL Server
: ?:.:i;itﬁmg mysal

3 .

INGR=S Cassandra

Databases & Your Research

: HBASE
@ PostgreSQL
S QLIT,B L W/ (%»v)

11

2/17/11

Example: SQLite

Logical Data Model Relational
Query Interface SQL(ish), API
Transaction Support ACID
Concurrency File-based

Performance Limited scaling; limited query
optimizer; in-process

VSQLite

2/17/11 Databases & Your Research

Example: MySQL

Logical Data Model Relational

Query Interface

SQL, API

Transaction Support ACID

Concurrency

Performance

2/17/11

Client-server, Multi-server

Limited single-query parallelism

MySQRL-

Databases & Your Research

13

Example: Cassandra

Logical Data Model Key-Value
Query Interface Limited API
Transaction Support Eventual Consistency
Concurrency Distributed
Performance 50GB*
MySQL Cassandra
Write Read Write Read
300ms 350ms 0.12ms 15ms

/ !:w: ?
*The Cassandra Distributed Database (2010)

Cassandra http://www.parleys.com/#st=5&id=1866
2/17/11 Databases & Your Research 14

Relational Databases 101

Data Model (informally)
SQL Basics

Indexing
Tools/Resources

The Relational Data Model

e Database: set of tables

* Table: set of n columns, bag of rows
— Column: name, [type]
— Row: n-tuple (value for each column)

Example: SMem Tables

smem7_lIti

access_1

smem?7_symbols_str

id sym_const
1 1 2 0 1 1 foo
1 3 0 1 1 2 bar
3 self
65 A smem --add {
(<al> “~foo bar
66 B rself <al>)
}
2/17/11 Databases & Your Research 17

Data Model Notes

Normalization

— Data organization to minimize redundancy
— Forms: 3NF, BCNF, ...

Key: column(s) useful in identifying rows
— Primary key: unique identification

Data meaning/use arises from queries that
relate rows of distinct tables (usually via keys)

Structured Query Language (SQL)

Declarative language to describe what data to
get/modify in a relational database

Core commands
— CREATE
— INSERT
— UPDATE
— DELETE
— SELECT

Running Example: RL

Experimental Data
— Multiple conditions

— Multiple trials
— Multiple episodes o2
— Metric: avg. reward § oo
? :?2 =mm NO distracters

mmm 5 distracters

-12 1
Lesioned ep. mem

-14

i > =) o
500 1000 1500 2000 2500

2/17/11 Databases & Your Research 20

CREATE Table

CREATE TABLE table name
(

column namel data type,
column name2 data type,

) ;

2/17/11 Databases & Your Research

21

CREATE Table: Example

CREATE TABLE my experiment
(

exp condition 100),
trial num ,

episode num ,

reward

) ;

2/17/11 Databases & Your Research

22

CREATE Table: Result

my_experiment

2/17/11 Databases & Your Research 23

INSERT Data

INSERT INTO table name
(columnl, column2, ..)
VALUES

(valuel, value2, ..);

2/17/11 Databases & Your Research

24

INSERT Data: Example

INSERT INTO my experiment
(exp condition, trial num,
episode num, reward)

VALUES

(‘simple’, ‘1, ‘1’7, '-107);

2/17/11 Databases & Your Research 25

INSERT Data: Result

mm

5|mple

2/17/11 Databases & Your Research 26

A Few INSERTSs Later...

I S B

5|mple 1

simple 1 2 -9
simple 1 3 -10
complex 1 1 -10
complex 1 2 -5
complex 1 3 -1

2/17/11 Databases & Your Research 27

UPDATE Data

UPDATE table_name

SET columnl=wvaluel,
column2=wvalue?2,

WHERE [condition(s)];

2/17/11 Databases & Your Research

28

UPDATE Data: Example

UPDATE my experiment
SET exp condition='‘'stupid’
WHERE exp condition=‘simple’;

2/17/11 Databases & Your Research

29

UPDATE Data: Result

I S B

stupld 1

stupid 1 2 -9

stupid 1 3 -10
complex 1 1 -10
complex 1 2 -5
complex 1 3 -1

2/17/11 Databases & Your Research 30

DELETE Data

DELETE FROM table name
WHERE [condition(s)];

2/17/11 Databases & Your Research

31

SELECT Data

SELECT

columnl, column2, .. <
FROM

tablel, table2,
WHERE

Aggregation Functions
Count, Average, Min, Max
StdDev, Variance

[condition (s)] <
GROUP BY

columnl, column2,
ORDER BY

columnl [ASC/DESC],

Comparison Functions
= <>, >, <

))) oo

IN, BETWEEN, STRCMP
LIKE (regex)

2/17/11 Databases & Your Research

Output
A “result set” containing

>=0 rows

A “cursor” to the first row

32

SELECT Data: Example

SELECT

exp condition, trial num, episode num,
AVG (reward) AS avg _ reward

FROM

my experiment

WHERE

exp condition "old’

GROUP BY

exp condition, trial num, episode num
ORDER BY

trial num ASC, episode num ASC,
exp condition DESC

2/17/11 Databases & Your Research

33

SELECT Data: Result
_exp_condition A | trial_num¥ | episode_num¥ | avg_reward |

= stupid 1 1 -10.00
complex 1 1 -10.00

stupid 1 2 -9.00

complex 1 2 -5.00

stupid 1 3 -10.00

complex 1 3 -1.00

2/17/11 Databases & Your Research 34

SELECT 201: Joins

SELECT id, ascii chr, num
FROM smem/ 1lti, smem7 ascii

WHERE smem?7_ascii

smem/ lti.letter= ascii_num ascii_chr
o 65 A

smem/ ascili.asclil num 66 8

smem?7_lti

65 1 2 1 1 1

2/17/11 Databases & Your Research 35

SELECT 201: Joins

SELECT id, ascii chr, num
FROM smem/ 1lti, smem7 ascii
WHERE

smem/ lti.letter=

smem’/ ascii.ascii_num

1 A 1

2/17/11 Databases & Your Research

36

SELECT 201: Sub-Queries

SELECT 1id
FROM smem7/ symbols str
WHERE sym const=‘'foo’

smem?7_symbols_str

smem7_web sym_const

parent_id mm act_value 1 foo
1 2 0

1 1 2 bar
1 3 0 1 1 3 self

2/17/11 Databases & Your Research 37

SELECT 201: Sub-Queries

SELECT 1id
FROM smem7/ symbols str
WHERE sym const=‘'foo’

id

2/17/11 Databases & Your Research

38

SELECT 201: Sub-Queries

SELECT *
FROM smem7_web
WHERE attr=

(SELECT id FROM smem7_ symbols str WHERE sym_const=‘foo’)

smem?7_symbols_str

smem7_web sym_const

parent_id mm act_value 1 foo
1 2 0

1 1 2 bar
1 3 0 1 1 3 self

2/17/11 Databases & Your Research 39

SELECT 201: Sub-Queries

SELECT *
FROM smem7_web
WHERE attr=

(SELECT id FROM smem7_ symbols str WHERE sym_const=‘foo’)

parent_id | attr | val_const | val_Iti | act_value
1 1 2 0 1

2/17/11 Databases & Your Research

40

Additional SQL Topics

Transactions

Constraints

Triggers

Views

Procedural SQL Extensions

Indexes: B+-Trees

Most common index
— Balanced tree

— Bounded out-degree

— Sorted, linked list of
content pointers at
leaves

— Usually keep top k-levels
in RAM for fast lookups

— O(log) multi-key lookup

* O(c) subsequent read

[

dg dg d;

Indexes: Application

CREATE INDEX index_name ON
table name (columnl, column2, ..)

— Ordering of columns is important!

Subsequent queries that test value of (column1)
or (column1, column2) or ... will automatically
use index

 O(table size) -> O(log(table size))

2/17/11 Databases & Your Research 43

Tools/Resources

* W3Schools SQL Reference
— http://www.w3schools.com/sql/sql_quickref.asp

e phpMyAdmin: Web interface to MySQL
— http://www.phpmyadmin.net

e SQLiteMan: Platform-independent GUI
— http://sgliteman.com

Databases & Your Research

Draw on DBMS strengths, balanced with
overhead (learning, computation, data

conversion)

Use Cases
— Algorithmic Component (EpMem/SMem)
— Data Set Conversion (WordNet)
— Experimental Domain (Dice Game)
— Experimental Data Store (Speedy)

Use Case: EpMem/SMem

SQLite as easy B+-tree Efficient, well-tested/ Questionable scaling
library supported
Focus on interesting Library reliance -> bad
problems surprises (optimizer, buffer

management, typos)

Limited inspect-ability of
library (w/o becoming an
expert)

“Real” DBMS overhead is

too great

File-based debugging/ Existing, reliable tools on
analysis of memories multiple platforms

2/17/11 Databases & Your Research 46

Use Case: WordNet

Conversion of existing data Fast, easy, reliable queries Time/computation

sets (WordNet, SemCor, using arbitrary tools/ overhead vs. existing tools
Senseval-2/3) to SQL languages (for analysis and and more basic data
experiments) representation

2/17/11 Databases & Your Research 47

=

Use Case: Dice Game

Approach

Conversion of existing Quick to get up and Far too slow for mass RL
database-backed running (I=GET, O=POST) experimentation

application to SML I/O

Uniform interface for Soar
and humans

Offload concurrency and

multi-machine
experimentation

2/17/11 Databases & Your Research 48

Use Case: Speedy

Database as experimental Fast, reliable, reproducible Overkill for small
data store: a common data analysis experiments
format with benefits

HTTP as easy intermediary Minimal effort to compute
between experimental arbitrarily complex
data producer and SQL aggregations that scale

Easy to support web-
accessibility and custom

reporting

Robust to human/system
failure

2/17/11 Databases & Your Research 49

Use Case Summary

Databases are not magic, but can serve useful roles
in research

— Reliable, scalable, dynamic data analysis

— With caution, efficient data structures that scale and
support inspection with powerful tools

Thoughts for future exploration...
— Incremental index statistic updating
— Graph DB algorithms
— Spatial DB algorithms
— Probabilistic DBs

2/17/11

Thanks :)

Questions?

51

